此转载是对航空航天系统的动态,控制和致动的全面研究,解决了航空航天工程中的关键挑战和创新解决方案。通过整合新的方法论和实际应用,该重印展示了空间操纵器的分布式控制中的进步,无拖力卫星的状态依赖性控制,全天候立方体的混合推进系统以及用于Aero-Engine Engine和Spacecra的先进策略。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。 此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。 通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。 针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。
PJ林地的西北部地区在黄色和橙子中占据了冬季水分的占主导地位。他们在夏天仅获得15-35%的水分。东南部的夏季水分占季风的占主导地位,在夏季,其降水量的35-65%。
在多细胞生物中,细胞行为受到严格调节,以使成人组织的适当胚胎发育和维持。该控制中的关键组成部分是通过信号通路之间的细胞之间的通信,因为细胞间通讯的误差可以诱导发育缺陷或癌症等疾病。在过去的几年中,信号传导不是静态的,而是随着时间的推移而变化。在每个信号通路中存在的反馈机制都会导致各种动态表型,例如以细胞类型和阶段依赖性方式出现的瞬态激活,信号渐变或振荡。在细胞中,这种动力学可以发挥各种功能,使生物体可以以可靠和可重复的方式发展。在这里,我们专注于ERK,Wnt和Notch信号通路,这些途径在几种组织类型和生物体中是动态的,包括脊椎动物胚胎的周期性分割,并且在癌症中常常失调。我们将讨论生化过程如何影响其动力学以及这些对多细胞系统中细胞行为的影响。
CULTURELINK 文化发展研究与合作网络由联合国教科文组织和欧洲委员会于 1989 年成立。网络的联络点是克罗地亚萨格勒布国际关系研究所。成员 从事文化发展与合作的网络、协会、基金会、机构和个人。网络目标 加强成员之间的交流;收集、处理和传播有关世界文化和文化发展的信息;鼓励联合研究项目和文化合作。理念 促进和支持对话、质疑和辩论文化发展文化实践和政策。邮寄地址 CULTURELINK/IMO Ul. Lj. F. Vukotinovića 2 PO Box 303, 10000 Zagreb, Croatia 电话:+385 1 48 77 460 传真:+385 1 48 28 361 电子邮件:clink@ irmo.hr 网址:http://www.culturelink.hr http://www.culturelink.org 下载地址http://www.culturelink.org/publics/joint/digital_culture-en.pdf
范围 第 21 届国际流体动力学会议 (ICFD2024) 自 2004 年以来每年举办一次,将于 2024 年 11 月 18 日至 20 日在日本仙台举行。本次会议的目标是通过讨论和交流与最先进科学领域和尖端技术相关的信息,探索流体动力学科学技术的新视野。ICFD 现在已被世界各地的研究人员和工程师公认为流体动力学领域规模最大、最重要的国际会议之一。它在促进国际研究合作方面也发挥着重要作用。特别是,ICFD2024 专注于能源相关主题,例如清洁能源、氢能和自然能源。此外,值得注意的是,ICFD 为年轻研究人员和学生提供了独特的机会,通过积极参与会议来发展自己,并通过奖励来鼓励年轻研究人员和学生。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
我们如何利用经典的分子动力学模拟来模拟和分析控制多晶硅沉积参数对沉积多晶硅膜结构的影响的现象和机制。多晶硅膜的晶粒形状和大小、结晶度、晶粒边界结构和应力取决于生长温度、生长膜中的温度分布、沉积通量、通量变化以及由于沉积通量而传递到膜表面的能量。主要结果包括:(i)沉积的多晶硅薄膜的结晶度分布对应力、温度和沉积流不同参数的依赖性,(ii)沉积初期的生长模式,(iii)多晶硅薄膜沉积初期种子晶粒的相互作用和稳定性以及从孤立晶粒生长到多晶硅生长的过渡,(iv)不同硅相的温度、结晶度、晶体形状和热导率的相互作用,(v)描述了晶粒生长的四个不同阶段:成核、生长、消失和延迟。
© Prof. Mirko Cinchetti 晶体中过渡金属离子局部 3d 态之间的激发,通常称为 dd 跃迁,在固态物理、材料科学和化学中的各种现象中起着关键作用。这些跃迁对过渡金属氧化物的光学性质、氧化物表面的催化活性、高温超导性和磁行为有重大贡献,促进了自旋交叉跃迁,并将光激发与声子和磁振子等量化现象联系起来。二维 (2D) 反铁磁体中发现的独特效应,例如电子-声子束缚态、亚太赫兹 (sub-THz) 频率磁振子模式和混合声子-磁振子模式,凸显了由 dd 跃迁驱动的复杂现象。在本次演讲中,我将讨论我们最近对 FePS 3 的研究,之所以选择 FePS 3,是因为它有望成为一种可扩展的范德华反铁磁半导体,即使在 2D 极限下也能保持磁序。我们采用了两种互补的实验方法。首先,进行泵浦探测磁光测量,以观察激光驱动的晶格和自旋动力学。与 Fe 2+ 多重态中的 dd 跃迁共振的泵浦诱导了以 3.2 THz 振荡的相干声子模式。值得注意的是,这种模式在低光吸收范围内是可激发的,甚至可以保护单个反铁磁层免受损坏。模式的振幅随温度升高而减小,在系统转变为顺磁相时在尼尔温度下消失,从而说明了它与长程磁序的联系。此外,在外部磁场中,这种 3.2 THz 声子模式与磁振子模式混合,从而能够对所得的声子-磁振子混合模式进行光学激发 [1]。此外,我们利用角分辨光电子能谱 (ARPES) 探测基态的电子结构 [2],并利用时间分辨 ARPES 捕捉 FePS 3 中选定自旋允许和自旋禁忌 dd 跃迁的超快动力学 [3]。磁光实验的见解与 ARPES 的发现相结合,揭示了 FePS 3 中 dd 跃迁背后的复杂准粒子动力学,从而更深入地了解它们在量子材料行为中的作用。
经过几十年的理论和计算发展,分子动力学 (MD) 模拟不仅已成为补充实验解释和预测的工具,而且还是更高级别模拟的基准。当我们考虑 MD 模拟所需的每个组件时:理论引擎(例如,牛顿运动定律、热力学定律、朗之万方程、泊松-玻尔兹曼方程等)、力场(计算势能和力的参数)、传播算法(例如,Verlet 积分)、系统(通常由坐标、速度和连接组成)、控制参数(如温度、压力等)和可观测量(例如,自由能计算、集体变量监测等),每个组件都经过了精心的手动发现、设计、调整和部署,已经取得了长足的进步。MD 模拟在大多数方面似乎已经“成熟”,在将自由能计算与生物系统结合起来方面实现了大约 ~1 kcal/mol 的精度。然而,折叠/展开蛋白质结构采样、蛋白质-蛋白质相互作用结构采样、大系统模拟、罕见事件模拟、具有不可忽略的核量子效应的模拟、反应、新材料的参数化和高通量自由能计算等问题仍然存在,需要新的研究和开发。自然而然,人们可以转向人工智能 (AI),这是另一个因硅革命而显著加速发展的领域。毋庸置疑,人工智能已经在与 MD 相关的领域中展示了它的实用性,尤其是在这个“后 AlphaFold 时代”。现在的问题不是“如果”,而是我们如何结合这两个强大的工具来进一步推动这两个领域的研究。