在数字时代,密码学是保护敏感信息免受数据入室盗窃威胁的主要解决方案。椭圆曲线加密(ECC)算法在密码学中提供了高度的安全性,其密钥尺寸相对较小,ECC与Diffie -Hellman(DH)集成在一起,以形成ECDH。但是,有效的密钥管理是实施ECC的主要挑战。因此,这项研究集中在系统潜伏期分析上,该分析涉及使用两个不同数据结构的算法,即hashmap和arraylaylist。本研究根据各种情况来衡量系统延迟,以keyserver中存储的虚拟数据数量来评估数据结构使用对系统性能的影响。测试结果表明,在处理大数据的量时,哈希图更有效,更稳定,比阵列列表的延迟相对较低,而阵列列表的潜伏期随着数据量的增加而显着增加。这表明所使用的数据结构对加密系统的效率和性能有重大影响。
非对称密码学 (又称公钥密码学) 是我们系统的基石之一:它被广泛用于加密、数字签名和密钥协商算法 (如 RSA [ 1 ]、DSA [ 2 ] 和 ECDH [ 3 ]),而这些算法则嵌入在互联网通信中最广泛使用的协议中 (如 TLS [ 4 ])。这些密码系统依赖于这样的假设:某些问题 (如素数分解和离散对数问题) 在使用传统计算的情况下很难在合理的时间内解决:由于这种“计算”安全性,以及缺乏能够破解它们的有效算法,这些问题被认为是安全的。量子计算利用量子物理学,提供了一个完全不同的环境,并因此能够在多项式时间内解决难题的新算法 (例如,用于素数分解的 Shor 算法 [ 5 ])。目前,量子计算机还不足以对这些密码系统构成真正的威胁,但随着 Google 1 和 IBM 2 等众多贡献者的加入,研究进展越来越快,推动了技术发展。一些算法的破解时间已经进行了讨论 [ 6 ],结果显示 2048 位 RSA 分解只需 8 小时。需要找到传统密码系统的替代解决方案来克服这一威胁。
摘要 - 本文提出了遗传算法(GA)和粒子群优化(PSO)之间的比较分析,这是两个重要的人工智能算法,重点介绍了操作椭圆曲线加密(ECC)参数。这些包括椭圆曲线系数,质数,发电机点,组顺序和辅因子。研究提供了有关哪种生物启发算法为ECC配置产生更好的优化结果,并在相同的健身函数下检查性能。此函数包含了确保鲁棒的ECC参数的方法,包括评估罪行或异常曲线,并应用Pollard的Rho Attack和Hasse定理以优化精度。在模拟的电子商务环境中测试了由GA和PSO生成的优化参数,与诸如SECP256K1之类的知名曲线在使用椭圆曲线 - diffie Hellman(ECDH)和基于哈希的消息身份验证代码(HMAC)的过程中形成鲜明对比。专注于量词前时代的传统计算,这项研究突出了GA和PSO在ECC优化中的功效,这对增强了第三方电子商务整合的网络安全的影响。我们建议在量子计算广泛采用之前立即考虑这些发现。
DSA Digital Signature Algorithm ECDH Elliptic Curve Diffie-Hellman ECDSA Elliptic Curve Digital Signature Algorithm EUF-CMA Existential Unforgeability under Chosen-Message Attack FFDH Finite-Field Diffie-Hellman FIPS Federal Information Processing Standard HPKE Hybrid Public-Key Encryption IETF Internet Engineering Task Force IKE Internet Key Exchange IND-CCA Indistinguishability under Chosen-Ciphertext Attack IND-CPA Indistinguishability under Chosen-Plaintext Attack IRTF Internet Research Task Force KDF Key Derivation Function KDFEM Key Derivation Function Encapsulation Mechanism KEM Key Encapsulation Mechanism LMS Leighton-Micali Signature ML-DSA Module-Lattice-based Digital Signature Algorithm ML-KEM Module-Lattice-based Key Encapsulation Mechanism OW-CCA One-Way under Chosen-Ciphertext Attack OW-CPA One-Way under Chosen-Plaintext Attack PKCS Public-Key Cryptography Standards PRF Pseudo-Random Function RSA Rivest-Shamir-Adleman S/MIME Secure/Multipurpose Internet Mail Extensions SIKE Supersingular Isogeny Key Encapsulation SLH-DSA Stateless Hash-based Digital Signature Algorithm SSH Secure Shell SSL Secure Sockets Layer TLS运输层安全UOV UOV不平衡的油和醋XMSS扩展Merkle签名方案
摘要:如今,医疗保健监测系统在医疗领域非常重要,可以立即了解患者的健康状况。在拟议的系统中,传感器固定在患者的身体上或放置在身体周围的某个距离上,以收集患者的重要参数,例如血压,温度,心跳率等。这些参数是由医疗保健专业人员通过蓝牙,Zigbee等的某些连接机制收集的。这些重要数据将以安全的方式外包到云存储,以避免攻击者的攻击。因此,我们需要一些保护机制来保护此信息。本文通过基于椭圆曲线(ECDH)加密术的Diffie-Hellman键交换,通过随机数密钥生成提出了轻巧的加密算法(对称键)。由于替换字节(S-box)和折叠(水平和垂直)操作的结果,提出的对称密钥算法实现了加密术的最重要特性,例如混乱和扩散。实验结果表明,所提出的算法的整体执行时间优于标准的高级加密标准(AES)算法。所提出的算法的吞吐率为20.525095 kb/秒,而对于标准AES算法吞吐量率为18.727215 kb/秒。因此,提出的算法比现有的AES算法快。此外,在提出的算法中,S-box,IS-box和关键生成过程的构建完全不同,因此它增加了攻击者的复杂性,并且会使攻击者造成混乱。
摘要 - 紧凑的密钥大小和椭圆曲线密码学(ECC)曲线家族的计算潜伏期低,这对它们集成到网络协议中引起了极大的兴趣。根据对其他对其他ECC实例的后门的研究,将224位安全性的曲线曲线448(确保224位安全性)是集成到加密图书馆中的理想曲线选择,从而损害了其安全性,从而导致曲线448集成到TLS1.3协议中。Curve448及其Biration等价的未WISTED EDWARDS Curve ED448,分别用于密钥交换和身份验证,由于其最小的内存要求,对低端嵌入式加密库呈现了完美的拟合。在这项工作中,我们将操作的蒙哥马利阶梯点乘法部署到广泛使用的IOT加密库WolfSSL中,并基于Curve448和ED448,现在侧向通道强大的ECDH和EDDH和EDDSA。我们根据推荐的Cortex-M4 STM32F407-DK ARM平台评估了新集成的体系结构的性能。我们通过强大的TVLA分析对拟议的蒙哥马利阶梯实施进行彻底的侧通道评估,揭示了DPA数据泄漏。我们整合了对策以保护我们的设计,评估其有效性并分析延迟开销。我们以大约1的价格实现了SCA稳健曲线448和ED448。2 MCC(1。 36×执行时间)。 最后,我们报告了我们的完全SCA保护曲线448和ED448的性能,作为TLS1.3 WolfSSL的一部分,报告1。 04×性能与原始的WolfSSL代码相比。2 MCC(1。36×执行时间)。最后,我们报告了我们的完全SCA保护曲线448和ED448的性能,作为TLS1.3 WolfSSL的一部分,报告1。04×性能与原始的WolfSSL代码相比。
代理描述 - 根据2006年投票倡议(提案203)的授权,亚利桑那州幼儿发展和卫生委员会(ECDHB)的授权是由每包80美分的香烟税以及其他烟草产品的税款资助。董事会资助幼儿园及其家人之前的儿童幼儿发展计划和服务。该机构通常也被称为“第一件事”。背景幼儿发展和卫生基金于2006年制定,提案203施加了每包80美分的香烟税,以资助ECDHB,也称为“第一件事”。烟草税的收入存入了幼儿发展和健康(ECDH)基金,并分为2个帐户:将90%的资金分配给了该计划帐户,将资金的10%分配给管理费用帐户。每年由董事会制定的年度计划帐户预算,其中10%(或全州总计的9%)可以用于全州范围的计划,其余资金分配给了地区委员会(占全州总计的81%)。根据5个地区的5岁及以下人口以及5岁以下的人口居住在贫困线以下,将60.8%的人分配给各个地区。董事会采取酌处权将其他20.2%分配给地区。在2024财年,ECDHB花费了65,5004亿美元用于儿童保育奖学金,如表1所示,平均每月提供6,020名儿童,高于2023财年的5,298。此外,ECDHB的一次性联邦COVID-19救济资金用于托儿奖学金。联邦资金已完全截至2024年6月。通过3个机构提供了由国家资助的托儿服务:经济安全部(DES),儿童安全部(DCS)和ECDHB。(有关更多信息,请参阅JLBC网站上的托儿计划摘要。)家庭支持主要由为婴儿,儿童及其家人提供自愿的家庭服务,专注于育儿技能,早期的身体和社会发展,识字,健康和营养;它还包括有关育儿,食物盒,家长套件和其他服务的课程。
摘要 :当代密码算法能够抵御最严重的网络安全威胁和引人注目的网络攻击。近年来,信息安全科学家和研究人员已经开发出各种密码方案,能够抵御使用最复杂(就处理器速度而言)的经典计算机进行的攻击。然而,随着量子计算机的出现,这种抵抗力很快就会消失。在本文中,我们根据人们普遍认为量子计算机和量子算法对当前安全的密码原语的威胁对其进行了分析。我们发现,Grover 和 Shor 的基于量子的算法实际上分别对对称密码系统(例如 128 位 AES)和非对称(公钥)密码系统(例如 RSA、Elgamal、椭圆曲线 Diffie Hellman (ECDH) 等)的持续安全性构成了威胁。我们发现,这些算法之所以比当前系统更具有密码分析能力,是因为它们(Grover 和 Shor)都为各自的算法配备了量子电路组件,可以通过将单个电路应用于 n 量子位输入的所有可能状态来并行执行 oracle。量子计算机和基于量子的算法具有这种指数级的处理能力,因此当前的密码系统很容易被破解,因为这些算法可以解决底层数学问题,例如整数分解、离散对数问题和椭圆曲线问题,这些问题构成了受影响密码系统安全性的基础。基于这一认识,作为我们为后量子时代做好准备的一部分,我们探索了其他数学结构(格、哈希、代码、同源性、基于高熵的对称密钥抗性和多元二次问题),这些结构的难度可能超过量子计算机和基于量子的算法所带来的密码分析噩梦。我们的贡献是,基于这项研究的结果,我们可以自信地断言,对于严重依赖 HTTPS、TLS、PGP、比特币等协议和应用程序的组织来说,一切希望都没有破灭,这些协议和应用程序的安全性源自濒临灭绝的密码系统。 稿件于 2023 年 5 月 6 日收到 | 修订稿件于 2023 年 5 月 13 日收到 | 稿件于 2023 年 6 月 15 日接受 | 稿件于 2023 年 6 月 30 日发布。 * 通信作者