摘要 — 机器学习在基于脑电图 (EEG) 的脑机接口 (BCI) 中取得了巨大成功。现有的大多数 BCI 研究都侧重于提高解码精度,只有少数研究考虑了对抗安全性。尽管在计算机视觉等其他应用领域已经提出了许多对抗性防御方法,但先前的研究表明,将它们直接扩展到 BCI 会降低良性样本的分类精度。这种现象极大地影响了对抗性防御方法对基于 EEG 的 BCI 的适用性。为了缓解这个问题,我们提出了基于对齐的对抗性训练 (ABAT),它在对抗性训练之前执行 EEG 数据对齐。数据对齐将来自不同领域的 EEG 试验对齐以减少它们的分布差异,而对抗性训练进一步增强了分类边界的鲁棒性。数据对齐和对抗性训练的结合可以使训练后的 EEG 分类器同时更准确、更鲁棒。在两种不同的 BCI 范式(运动想象分类和事件相关电位识别)的五个 EEG 数据集、三个卷积神经网络分类器(EEGNet、ShallowCNN 和 DeepCNN)和三种不同的实验设置(离线受试者内跨块/会话分类、在线跨会话分类和预训练分类器)上进行的实验证明了其有效性。非常有趣的是,通常用于破坏 BCI 系统的对抗性攻击可以在 ABAT 中使用,以同时提高模型准确性和鲁棒性。
摘要 - 成功的运动象征脑 - 计算机界面(MI-BCI)算法要么提取大量手工制作的功能,要么训练分类器,要么在深度卷积的卷积新神经网络(CNNS)内组合特征伸缩和分类。这两种方法通常都会导致一组实用值的权重,在针对紧密资源约束设备上实时执行时会构成挑战。我们为每种方法提出了方法,允许将实价的权重转换为有效推断的二进制数字。我们的第一个方法基于稀疏的躁郁症随机投影,将大量的真实价值的Riemannian协方差投射到二进制空间,在该空间中,也可以通过二进制重量来学习线性SVM分类器。通过调整二进制嵌入的尺寸,我们与具有浅色oat16权重的型号相比,在4级MI(≤1.27%)中达到了几乎相同的精度,但提供了更紧凑的模型,具有更简单的操作以执行。第二,我们建议使用内存增强的神经网络(MANN)进行Mi-BCI,以使增强的内存被二进制。我们的方法使用双极随机投影或学习的投影替换了完全连接的CNN层。我们对Mi-BCI已经紧凑的CNN EEGNET的实验结果表明,使用随机投影可以通过1.28×at in ISO精度将其压缩。另一方面,使用学习的投影可提供3.89%的精度,但记忆尺寸增加了28.10倍。
摘要:运动想象 (MI) 脑机接口 (BCI) 因其在用户意图和任务执行之间直观匹配的特点而被广泛应用于各种应用。将干脑电图 (EEG) 电极应用于 MI BCI 应用可以解决许多限制并实现实用性。在本研究中,我们提出了一种多域卷积神经网络 (MD-CNN) 模型,该模型使用多域结构学习特定于主体和依赖于电极的 EEG 特征,以提高干电极 MI BCI 的分类准确率。所提出的 MD-CNN 模型由三个域表示(时间、空间和相位)的学习层组成。我们首先使用公共数据集评估了所提出的 MD-CNN 模型,以确认多类分类的分类准确率为 78.96%(机会水平准确率:30%)。之后,10 名健康受试者参与并在两个阶段(干电极和湿电极)执行了三类与下肢运动(步态、坐下和休息)相关的 MI 任务。因此,与仅使用单个域的传统分类器(FBCSP、EEGNet、ShallowConvNet 和 DeepConvNet)相比,所提出的 MD-CNN 模型使用三类分类器实现了最高的分类准确度(干电极:58.44%;湿电极:58.66%;偶然水平准确度:43.33%),并且两种电极类型之间的准确度差异最小(0.22%,d = 0.0292)。我们期望所提出的 MD-CNN 模型可用于开发具有干电极的稳健 MI BCI 系统。
使用小波的频谱分析被广泛用于识别脑电图中的生物标志物。同时,Riemannian几何形状启用了理论上接地的机器学习模型,具有高性能,用于预测来自多通道EEG唱片的生物医学结果。但是,这些方法通常依赖于手工制作的规则和顺序优化。相比之下,深度学习(DL)提供了端到端训练模型,可在各种预测任务上实现最新性能,但缺乏与既定神经科学概念的可解释性和互操作性。我们介绍了绿色(Gabor Riemann Eegnet),这是一个轻巧的神经网络,该网络集成了小波变换和用于处理原始脑电图数据的Riemannian几何形状。在三个数据集(Tuab,aab,aueeg,tdbrain)上进行五项预测任务(年龄,性别,凝视诊断,痴呆诊断,脑电图病理学),具有超过5000名参与者,绿色的表现优于非深度最先进的最新模型,并且使用CAU Benchmarks上的大型DL模型进行了良好的表现,并使用订单级符合订单级的CAU Benchmarks上表现出色。计算实验表明,绿色促进了学习稀疏表示的情况,而不会损害性能。绿色的模块化允许计算相同步的经典度量,例如成对的相锁定值,这些值可传达用于痴呆诊断的信息。学习的小波可以解释为带通滤波器,从而增强解释性。我们用Berger效应说明了这一点,证明了闭合眼睛时8-10 Hz功率的调制。源代码可公开可用。通过整合领域知识,绿色实现了理想的复杂性 - 绩效权衡,并学习可解释的脑电图表示。
内在语言是一种内化的语言,人们用这种语言思考纯粹的意义。从大脑活动数据中解码内在语言不仅可以促进残障患者的交流,还可以帮助健康人整理思路,提高对元认知的理解。在之前的研究中,一种名为 EEGNet 的 EEG 数据深度学习模型被用于内在语言解码。然而,它在 4 类分类任务中只达到了 30% 的准确率。数据稀缺和内在语言解码固有的难度可能是原因,但这项研究假设以前的研究中特征提取不足。为了提高解码内在语言的准确性,使用迁移学习被认为是更有效的;在这种学习中,模型事先在不同的数据集上进行训练,然后针对目标数据进行微调。然而,迁移学习尚未应用于内在语言,甚至尚未应用于 EEG 数据。迁移学习对不同任务的脑电图数据或非脑电图数据的有效性尚未得到充分验证。本研究通过使用不同任务的脑电图数据和非脑电图数据对公开的内部语音数据集进行迁移学习,验证了特征提取的改进。结果证实,使用来自不同受试者的数据的迁移学习可以提高内部语音的准确性,但使用来自不同任务的脑电图数据的迁移学习则不会。另一方面,对于图像数据集,通过冻结某些层可以确认准确性的提高,即使数据的性质与脑电图数据不同。
摘要 - 空气写入识别是一项任务,涉及使用手指运动在自由空间中写的字母。这是手势识别的一种特殊情况,手势与特定语言的字母相对应。脑电图(EEG)是一种用于记录大脑活动的非侵入性技术,已被广泛用于脑部计算机界面应用中。杠杆eeg信号用于空气写作识别提供了一种有希望的替代输入方法,用于人类计算机相互作用。空气写作识别的一个主要优点是用户不需要学习新的手势。通过串联公认的字母,可以形成各种各样的单词,使其适用于更广泛的人群。但是,在使用脑电图信号识别空气写作方面的研究有限,这构成了本研究的核心重点。首先构建了包含在编写英语大写字母过程中记录的EEG信号的NeuroAir数据集。然后与不同的深度学习模型结合探索各种功能,以实现准确的空气写作识别。这些功能包括处理后的脑电图数据,独立的组件分析组件,基于源域的侦察时间序列以及基于球形和头部 - 基于基于的特征。此外,全面研究了不同EEG频带对系统性能的影响。这项研究中达到的最高准确度是44。04%使用独立的组件分析组件和EEGNET分类模型。结果强调了基于EEG的空气写入识别作为人类计算机交互应用中替代输入方法的用户友好模态的潜力。这项研究为未来的进步树立了强大的基准,并证明了基于EEG的空气写作识别的可行性和实用性。
抽象目标。混乱是学习过程中的主要认知情绪,影响了学生的参与度以及他们是否感到沮丧或无聊。但是,关于学习混乱的研究仍处于早期阶段,并且有必要更好地了解如何识别它以及哪些脑电图(EEG)信号表明其发生。目前的工作调查了使用脑电图进行推理学习期间的混乱,旨在通过将教育心理学,神经科学和计算机科学结合的多学科方法来填补这一空白。方法。首先,我们设计了一个实验,以积极,准确地引起推理中的混乱。第二,我们提出了一种主观和客观的关节标签技术来解决标签噪声问题。第三,为了确认可以将混乱的状态与非共同状态区分开,我们比较和分析了五个典型频段中混淆和未连接状态的平均频带能力。最后,我们提出了一个用于混乱分析的EEG数据库,以及传统(天真贝叶斯,支持矢量机,随机森林和人工神经网络)和端到端(长期短期记忆,残留网络和EEGNET)机器学习方法的基准结果。主要结果。发现的发现:1。在混乱和未融合条件之间,三角洲,theta,alpha,beta和较低伽玛的功率有显着差异; 2。更高的注意力和认知负荷;和3。意义。具有时间域特征的随机森林算法在二元分类中,具有高精度/F1得分(对于受试者的方法为88.06%/0.88,对于受试者的方法为84.43%/0.84)。这项研究促进了我们对混乱的理解,并提供了在学习过程中识别和分析的实用见解。它在学习过程中扩展了有关困惑和非共同状态之间差异的现有理论,并为认知感染模型做出了贡献。该研究使研究人员,教育者和从业人员能够监测混乱,开发自适应系统和测试识别方法。
大脑计算机界面(BCI)应用提供了一种直接的方法,将人脑活动映射到外部设备的控制上,而无需进行物理运动。这些系统,对于医疗应用至关重要,也对非医疗应用程序有用,主要使用非侵入性记录的EEG信号,用于系统控制,并需要算法将信号转换为命令。传统的BCI应用程序在很大程度上取决于针对特定行为范式量身定制的算法,并使用具有多个通道的EEG系统来收集数据。这使可用性,舒适性和负担能力复杂化。更重要的是,广泛的培训数据集的有限可用性限制了将收集到的数据分类为行为意图的强大模型的开发。To address these challenges, we introduce an end-to-end EEG classification framework that employs a pre-trained Convolutional Neural Network (CNN) and a Transformer, initially designed for image processing, applied here for spatiotemporal represen- tation of EEG data, and combined with a custom developed automated EEG channel selection algorithm to identify the most informative electrodes for the process, thus reducing data dimensionality, and放松主题的舒适性,并改善了脑电图数据的分类性能到受试者的意图。我们使用两个基准数据集(EEGMMIDB和OpenMiir)评估了我们的模型。与现有的最新脑电图分类方法相比,我们取得了卓越的性能,包括常用的EEGNET。这项研究不仅可以推进BCI领域,而且还为BCI应用程序提供了一个可扩展和负担得起的框架。我们的结果表明,OpenMiir的分类精度提高了7%,EEGMMIDB的分类为1%,平均值分别达到81%和75%。重要的是,这些改进是通过较少的记录渠道和较少的培训数据获得的,这证明了一个框架,可以从培训数据的量以及大脑信号所需的硬件系统的简单性方面支持更有效的BCI任务方法。
摘要 - 在事件相关的电位(ERP)信号分类中,在特定时间范围内识别相关的局部峰对于特征提取和随后的分类任务至关重要,尤其是在有关精神分裂症等精神疾病的研究中。但是,精神分裂症研究中的ERP数据通常包含许多对分类过程贡献的小峰。因此,至关重要的是,仅辨别和保留为改进分类结果传达特定特征的显着峰值。最近,基于高档和降尺度表示(UDR)技术的基于视觉的平滑算法已经证明了其在保留突出峰的特征时的有效性,同时从信号波形中滤除了非平衡峰。在UDR的操作下,输入信号在图像域中可视化。输入形状受到稀疏算法的影响,并将所得骨骼投射回信号域。此过程类似于神经科医生对信号的目视检查,在该信号中标记了突出的峰,而无关的峰被忽略了特征提取。这项研究将UDR应用于两个精神分裂症和匹配对照患者中记录的ERP的数据集,以评估其在信号分类中的有效性。此外,当使用较少的ERP通道时,我们分析了UDR对分类准确性的影响。我们使用多个分类器测试了这些效果。索引项 - 与事件相关电位(ERP),精神分裂症,平滑过滤器,信号处理,UDR,高档和下限表示实验结果表明,当在所有通道上应用UDR时,EEGNET表现出最显着的增强,精度增加了2.55%。此外,当信号时期的数量减半时,UDR在7个模型中有4个促进了增强,浅孔convnet的提高最高2.4%。值得注意的是,在仅FZ,CZ和PZ电极位置的信号形成的子数据集中使用UDR时,可以在更多模型上观察到精度增强。这些发现强调了UDR在增强精神分裂症分类准确性方面的有希望的潜力,尤其是应用于关注关键通道的数据集时。
1简介日本有近10,000例肌萎缩性侧索硬化症患者。 ALS患者的体育锻炼困难。因此,正在对大脑计算机接口(BCI)进行研究,该脑电波使用脑电波来与他人和计算机操作进行沟通。有一种使用P300的BCI方法。 p300是外部视觉和听觉刺激引起的一种潜力,在刺激后300毫秒至500毫秒内出现。通过捕获所选对象的P300,您可以选择目标并输入文本。 p300-播种机是使用p300拼写字符的系统。与字母数字字符排列的矩阵的每一行或列都以伪随机为基础点亮,以使所有字符在有限的时间内发光相同的次数。通过检测光刺激引起的P300,用户可以识别他们想要拼写的角色。使用非侵入装置测量脑波。这次,我们将报告p300-Speller实验的结果和P300的检测。 2在P300串联实验中进行的2个实验,捕获了与事件相关的电势,它是由用户打算的字符的照明引起的。这次,将字母数字字符放在6x6矩阵中,字母为蓝色,刺激为绿色。这是因为有报道说,与使灰色文本发光白色的常规方法相比,右脑的视觉皮层有所增加[1]。 图1显示了实验中使用的p300销售器。平均刺激时间和刺激间隔均为173.7 ms。一种尝试是眨眼每行30次,并要求对象计算指示字符(目标)点亮的次。 EPOC+用于测量脑波。采样频率为128Hz。 3预处理在实验中获得的脑波对每个试验进行带通滤波器(1.0至15.0Hz)。接下来,为了消除闪烁的噪声,在25μV的上限和下限为-25μV的情况下进行剪辑。此后,将基线设置为刺激力矩之前约102 ms(13点),从刺激时刻开始,将基线平均值从波形中减去1秒(128点)。 脑波中有很多噪音,很难用单个波形区分p300。因此,加法平均方法用于清楚提取对刺激的反应。添加和平均的波形数量越大,p300更容易区分,但是确定歧视和用户所需的时间将承受负担。因此,有必要确定p300的平均额外算术数量。图2显示了目标为O时T8通道的五个波形的平均值(第3行,第三列)。在刺激后250 ms的行属性的行和柱中可以看到电峰。这被认为是P300。 4。歧视方法分类目标和非目标字符(非目标)。作为BCI的CNN,已经提出了使用可分离卷积的“ EEGNET” [2]。深度