使用小波的频谱分析被广泛用于识别脑电图中的生物标志物。同时,Riemannian几何形状启用了理论上接地的机器学习模型,具有高性能,用于预测来自多通道EEG唱片的生物医学结果。但是,这些方法通常依赖于手工制作的规则和顺序优化。相比之下,深度学习(DL)提供了端到端训练模型,可在各种预测任务上实现最新性能,但缺乏与既定神经科学概念的可解释性和互操作性。我们介绍了绿色(Gabor Riemann Eegnet),这是一个轻巧的神经网络,该网络集成了小波变换和用于处理原始脑电图数据的Riemannian几何形状。在三个数据集(Tuab,aab,aueeg,tdbrain)上进行五项预测任务(年龄,性别,凝视诊断,痴呆诊断,脑电图病理学),具有超过5000名参与者,绿色的表现优于非深度最先进的最新模型,并且使用CAU Benchmarks上的大型DL模型进行了良好的表现,并使用订单级符合订单级的CAU Benchmarks上表现出色。计算实验表明,绿色促进了学习稀疏表示的情况,而不会损害性能。绿色的模块化允许计算相同步的经典度量,例如成对的相锁定值,这些值可传达用于痴呆诊断的信息。学习的小波可以解释为带通滤波器,从而增强解释性。我们用Berger效应说明了这一点,证明了闭合眼睛时8-10 Hz功率的调制。源代码可公开可用。通过整合领域知识,绿色实现了理想的复杂性 - 绩效权衡,并学习可解释的脑电图表示。
主要关键词