摘要 循环肿瘤细胞 (CTC) 是从原发肿瘤脱落、进入血液或体液并扩散到身体其他部位并导致转移的癌细胞。它们的存在和特征与不同类型癌症的进展和不良预后有关。分析 CTC 可以提供有关肿瘤遗传和分子多样性的宝贵信息,这对于个性化治疗至关重要。上皮-间质转化 (EMT) 和逆过程间质-上皮转化 (MET) 在产生和传播 CTC 中起着重要作用。某些蛋白质,如 EpCAM、波形蛋白、CD44 和 TGM2,在调节 EMT 和 MET 方面至关重要,可能是预防转移的治疗的潜在靶点并作为检测标记。已经开发了多种用于检测 CTC 的设备、方法和协议,具有各种应用。CTC 与肿瘤微环境的不同成分相互作用。 CTC 与肿瘤相关巨噬细胞之间的相互作用会促进局部炎症,使癌细胞逃避免疫系统,从而促进其附着和侵袭远处转移部位。因此,靶向和消除 CTC 有望防止转移并改善患者预后。人们正在探索各种方法来减少 CTC 的数量。通过研究和讨论靶向疗法,可以对其在抑制 CTC 扩散从而减少转移方面的潜在效果获得新的见解。此类治疗方法的发展为改善患者预后和阻止疾病进展提供了巨大的潜力。
选择晚期实体癌的靶向治疗方法(液体活检)描述/背景液体活检液体活检是指通过分析循环肿瘤DNA(ctDNA)或循环肿瘤细胞(CTC)来无创地表征外周血中的肿瘤和肿瘤基因组的方法。循环肿瘤DNA正常细胞和肿瘤细胞会向血液中释放小片段的 DNA,这被称为无细胞 DNA (cfDNA)。非恶性细胞的 cfDNA 是由细胞凋亡释放的。大多数无细胞肿瘤 DNA 来自凋亡和/或坏死的肿瘤细胞,无论是来自原发性肿瘤、转移瘤还是 CTC。(1) 与细胞凋亡不同,坏死被认为是一种病理过程,由于基因组 DNA 的不完全和随机消化,会产生更大的 DNA 片段。循环 DNA 的长度或完整性可以潜在地区分凋亡和坏死的来源。循环肿瘤 DNA 可用于肿瘤的基因组表征。循环肿瘤细胞完整的 CTC 从原发性肿瘤和/或转移部位释放到血液中。CTC 在血液中的半衰期很短(1-2 小时),CTC 通过渗出到次级器官而被清除。(1)大多数检测通过使用表面上皮标记物(如上皮细胞粘附分子 (EpCAM) 和细胞角蛋白)来检测 CTC。检测 CTC 的主要原因是通过量化循环水平来进行预后。检测 CTDNA 和 CTC
放射学技术仍然是乳腺癌早期检测的主要方法,对于从癌症中获得有利的结果至关重要。但是,需要更敏感的检测方法来补充放射学技术,以增强早期检测和治疗策略。使用我们最近建立的培养方法,该方法允许传播腔原性的正常和癌性乳房上皮细胞,流式细胞仪表征和基因组测序,我们表明可以在母乳中检测到癌细胞。细胞从乳腺癌中衍生而来的乳腺癌富含CD49F+/EPCAM-,CD44+/CD24-和CD271+癌症干细胞(CSC)。这些CSC在HDAC6的细胞质保留结构域,MORF4L1中的停止/增益插入以及SWI/SNF复合物分量Smarcc2中的缺失突变。csc对HDAC6抑制剂,BET溴ab剂抑制剂和EZH2抑制剂敏感,因为已知SWI/SNF复合成分的突变会增加对这些药物的敏感性。来自其他10名未知患有乳腺癌的女性的母乳的细胞中,其中两个含有富含CSC表型的细胞,并在NF1或KMT2D中携带突变,这些突变经常在乳腺癌中突变。具有NF1突变的母乳源性细胞在CDKN2C,PTEN和REL基因中还带有拷贝数变化。此处描述的方法可以使快速癌细胞表征,包括妊娠/产后乳腺癌的驾驶员突变检测和治疗性筛查。
尽管一些抗体-药物偶联物已获批用于癌症治疗,但它们的临床成功率并不令人满意,因为治疗窗口非常小,受偶联物和释放毒素的靶向和脱靶毒性影响。因此,必须探索具有系统研究的分子参数的其他形式以增加其治疗窗口。在这里,我们专注于有效分子量。为了生成具有精确定义的药物载量和可调药代动力学的偶联物,我们使用设计的锚蛋白重复蛋白 (DARPins),与不同长度的非结构化多肽融合,以产生具有任何所需半衰期的蛋白质,以确定具有最佳疗效的蛋白质。我们生成了一种 EpCAM 靶向 DARPin-MMAF 偶联物,与不同长度的 PAS 或 XTEN 融合,以及一系列匹配的非结合 DARPin 对照,以解释增强的渗透性和保留 (EPR) 效应,在小鼠中的半衰期覆盖从几分钟到 20.6 小时。所有结合物均以高纯度生产,在人类肿瘤细胞培养中表现出高特异性和细胞毒性,IC 50 值在低 nM 范围内,与多肽类型和长度无关。由于其纯化更简便,PASylated 结合物在携带 HT29 肿瘤异种移植的裸鼠中进行了测试。无论其大小如何,所有 PASylated 结合物在以 300 nmol/kg 重复全身给药后均具有良好的耐受性。我们发现具有中等大小和半衰期的结合物表现出最强的抗肿瘤作用,并推断这种作用是血清半衰期和肿瘤内扩散的折衷,因为结合率和亲和力基本相同,而外渗仅起很小的作用。
淋巴细胞及其亚群,它们广泛参与免疫细胞的抗原识别,细胞粘附和信号转导,并且是一系列重要的生理和病理学过程的分子basis,例如内炎,免疫反应,肿瘤转移,肿瘤转移等[8]。CD3分子是多特异性抗体中最常用的免疫募集效应细胞位点。在多特异性抗体结构中,由TRION Research/Neovii Biotech机构开发的抗原抗原是Epcam/CD3,用于治疗恶性腹水和由Amger机构开发的Bline-tumomab靶向抗原,用于急性淋巴细胞细胞细胞细胞细胞细胞。由Transtarget/Barbara Ann Karmanos癌症研究所开发的抗CD3-ANTI-HER2激活的T细胞目前正在II期临床研究中,靶向抗原HER2/CD3期II期可用于乳腺癌。CD47分子称为整合素相关蛋白。在免疫检查点上抑制CD47可以有效防止肿瘤细胞通过巨噬细胞逃避吞噬作用[9]。目前,针对CD47/CD19和CD47/CD20的多特异性抗体的研究在杀死体内和体外杀死Tu mor方面取得了良好的结果。由CD16在人NK细胞上介导的肿瘤细胞的直接杀死过程取决于溶液受体的质量紧密结合。目前,与CD16相关的多特异性抗体药物研究是由AFFIMED Company开发的AFM-13,该公司目前正在针对CD30/ CD16的II期临床研究中。针对CD19/CD16,EGFRVIII/CD16和EGFRWT/CD16的抗体处于研发阶段。这三种抗体不仅适用于血液学肿瘤,而且还可以靶向一些固体肿瘤[10]。
注释和定义 无细胞循环肿瘤 DNA (ctDNA) 是血液中循环的碎片状肿瘤衍生 DNA,它未被细胞携带。ctDNA 直接来自肿瘤或循环肿瘤细胞。循环肿瘤细胞 (CTC) 是从原发性肿瘤或转移部位脱落到血流或淋巴系统的完整细胞,通过血液循环在体内循环。 临床考虑 无细胞循环肿瘤 DNA 分析不应代替组织学组织诊断,但是,在上述特定临床考虑下,可以考虑使用 ctDNA。 无细胞循环肿瘤 DNA 分析不应与实体瘤的组织检测同时进行。如果无细胞循环肿瘤 DNA 分析结果为阴性,建议进行基于组织的分析。 描述 无细胞循环肿瘤 DNA (ctDNA) 直接来自肿瘤组织(原发性或转移性);随着肿瘤细胞死亡,其内容物被释放到血液中。对无细胞循环肿瘤 DNA (ctDNA) 进行的基因测试(也称为液体活检)可能为检测“驱动突变”或获得性基因突变提供一种非侵入性组织活检替代方法,可指导靶向治疗,也可用于追踪疾病进展。循环肿瘤细胞 (CTC) 是从肿瘤细胞脱落到血液或淋巴系统的完整肿瘤细胞。大多数检测通过使用表面上皮标志物(如 EpCAM 和细胞角蛋白)来检测 CTC。检测 CTC 的主要原因是通过量化循环水平进行预后,而不是指导治疗选择。相关政策本政策文件提供了循环肿瘤 DNA (ctDNA) 和循环肿瘤细胞检测(液体活检)的覆盖标准。有关其他肿瘤学相关检测,请参阅:
人类基因组被普遍转录,产生了大多数短而长的无编码RNA(LNCRNA),可以通过各种转录和转录后调节性机械性能影响细胞程序。大脑是长期非编码转录本的最富有的曲目,在中枢神经系统发育和体内稳态期间的每个阶段都起作用。功能相关的lncRNA的一个例子是在不同大脑区域中与时空组织的时空组织有关,这些物种在核水平以及特定神经元位点的其他转录本的运输,翻译和衰减中起着作用。在该领域的研究已经鉴定出了特定的LNCRNA对某些脑部疾病的贡献,包括阿尔茨海默氏病,帕克丁疾病,癌症和神经发育疾病,并赋予针对这些RNA的潜在治疗策略,以恢复正常现象的潜在治疗策略。在这里,我们总结了与大脑中LNCRNA相关的最新机械发现,重点是它们在神经发育或神经退行性疾病中的失调,它们用作中枢神经系统(CNS)疾病的生物标志物(CNS)疾病,体内和体内及其潜在的实用性及其对策略的潜在用途。
As a key factor in tumorigenesis, progression, recurrence and metastasis, the biological properties, metabolic adaptations and immune escape mechanisms of CSCs are the focus of current oncological research.CSCs possess self-renewal, multidirectional differentiation and tumorigenicity, and their mechanisms of action can be elucidated by the clonal evolution, hierarchical model and the dynamic CSCs model, of which the dynamic model is widely recognized due to its better explanation of the function and origin of CSCs.The origin hypothesis of CSCs involves cell-cell fusion, horizontal gene transfer, genomic instability and microenvironmental regulation, which together shape the diversity of CSCs.In terms of classi fi cation, CSCs include primary CSCs (pri-CSCs), precancerous stem cells (pre-CSCs), migratory CSCs (mig-CSCs), and chemo-radiotherapy-resistant CSCs (cr-CSCs and rr-CSCs), with each type playing a speci fi c role in tumor progression.Surface markers of CSCs, such as CD24, CD34, CD44, CD90, CD133, CD166, EpCAM, and LGR5, offer the possibility of identifying, isolating, and targeting CSCs, but the instability and heterogeneity of their expression increase the dif fi culty of treatment.CSCs have adapted to their survival needs through metabolic reprogramming, showing the ability to fl exibly switch between glycolysis and oxidative phosphorylation (OXPHOS), as well as adjustments to amino acid and lipid metabolism.The Warburg effect typi fi es their metabolic pro fi les, and altered glutamine and fatty acid metabolism further contributes to the rapid proliferation and survival of CSCs.CSC能够通过调节代谢网络来保持其干性特征,增强抗氧化剂防御并适应治疗应力来维持其干性。免疫逃生是CSC维持其生存的另一种策略,CSC可以通过诸如调节PD-L1表达的机制有效地逃避免疫监视,并促进免疫抑制性微环境的形成。一起,这些特性揭示了CSC的多维复杂性,强调了对CSC生物学对开发更有效肿瘤治疗策略的发展的重要性。将来,针对CSC的疗法将集中于表面标记物的精确鉴定,代谢途径的干预以及克服免疫逃生,以改善癌症治疗的相关性和效率,并最终改善患者的预后。
1 Zeng, SS 等人。转录因子 SALL4 调节 EpCAM 阳性肝细胞癌的干性。J Hepatol 60 , 127-134,doi:10.1016/j.jhep.2013.08.024 (2014)。2 Yong, KJ 等人。癌胚基因 SALL4 在侵袭性肝细胞癌中的作用。N Engl J Med 368 , 2266-2276,doi:10.1056/NEJMoa1300297 (2013)。3 Li, A. 等人。小鼠和人类髓系白血病发生中的 SALL4/MLL/HOXA9 通路。J Clin Invest 123 , 4195-4207,doi:10.1172/JCI62891 (2013)。 4 Li, A. 等。SALL4 是子宫内膜癌的新靶点。Oncogene 34 , 63-72,doi:10.1038/onc.2013.529 (2015)。5 Yuan, X. 等。SALL4 通过激活 CD44 表达促进胃癌进展。Oncogenesis 5 , e268,doi:10.1038/oncsis.2016.69 (2016)。6 Matyskiela, ME 等。SALL4 作为沙利度胺依赖性 cereblon 底物介导致畸性。Nat Chem Biol 14 , 981-987,doi:10.1038/s41589-018-0129-x (2018)。7 Donovan, KA 等。沙利度胺促进 SALL4 的降解,SALL4 是一种与 Duane Radial Ray 综合征有关的转录因子。Elife 7 , doi:10.7554/eLife.38430 (2018)。8 Dang, CV, Reddy, EP, Shokat, KM 和 Soucek, L. 对“不可用药”的癌症靶点进行药物治疗。Nat Rev Cancer 17 , 502-508, doi:10.1038/nrc.2017.36 (2017)。9 Verdine, GL 和 Walensky, LD 对癌症中不可用药的靶点进行药物治疗的挑战:从针对 BCL-2 家族成员中吸取的经验教训。Clin Cancer Res 13 , 7264-7270, doi:10.1158/1078-0432.Ccr-07-2184 (2007)。 10 Cromm, PM 和 Crews, CM 靶向蛋白质降解:从化学生物学到药物发现。Cell Chem Biol 24 , 1181-1190, doi:10.1016/j.chembiol.2017.05.024 (2017)。11 Tanimura, N.、Saito, M.、Ebisuya, M.、Nishida, E. 和 Ishikawa, F. 干细胞相关因子 Sall4
肝细胞癌 (HCC) 是最常见的原发性肝癌,其发病率持续增长,是一个严重的医学问题。HCC 的发展是一个复杂的多步骤过程,最终会导致炎症损害、肝细胞坏死/再生和纤维化沉积 [1]。然而,HCC 的化疗治疗有局限性。目前用于一线全身治疗的药物,如索拉非尼和仑伐替尼,只能延长患者生存期几个月,主要是因为对这些疗法产生了耐药性 [2]。先前的研究报道了导致索拉非尼耐药 HCC 的潜在机制 [3]。核受体结合蛋白 2 (NRBP2) 可能通过影响 Bcl2 和 Akt 通路中存活蛋白的表达来增加 HCC 细胞化疗耐药性 [4]。组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1 (KDM1A) 可通过激活 Wnt 信号增加 β -catenin 通路,从而降低 HCC 的治疗敏感性 [5]。此外,KRAS 通路加速 RAF/ERK 和 PI3K/AKT 信号传导,导致索拉非尼耐药 HCC 细胞增殖增加、凋亡抑制 [6]。多项研究表明,癌症干细胞 (CSC) 在癌症复发和对分子靶向疗法的主要耐药性中起着重要作用。最近的研究表明,具有干细胞样特征的 HCC 细胞,例如表达 CSC 表面标志 CD44、EpCAM、CD133 和 CD90,对索拉非尼诱导的细胞死亡表现出抗性 [7]。然而,索拉非尼耐药细胞获得癌症干性的机制仍不清楚 [8]。核因子红细胞衍生2样2 (Nrf2) 信号异常常见于多种癌症,包括 HCC,并参与肿瘤发生、肿瘤进展和化疗耐药性[9]。Nrf2 有助于维持氧化应激平衡,并可通过激活多种抗氧化基因的转录促进癌细胞在外来化合物毒素下的存活。Keap1/Nrf2 通路被认为是调节细胞防御氧化应激的主要信号级联。此外,Nrf2 通过驱动巨噬细胞极化为 M2 表型并促进癌细胞迁移来影响肿瘤微环境[10]。正常情况下,Keap1 在细胞质中分离并结合 Nrf2,导致蛋白酶体介导的下游基因降解[11]。在某些情况下,Nrf2 从 Keap1 中释放出来并转移到细胞核中,从而激活 ARE 介导的解毒酶基因表达,包括 HO-1 [ 12 ]。HO-1 参与调节 NRF2 靶向的 ATP 结合盒 (ABC) 外排转运体 (ABCC1、ABCG2 等) [ 13 ]。此外,Nrf2 诱导糖酵解基因的表达,并参与对癌细胞干细胞特性很重要的基因的转录调控,从而促进恶性肿瘤的发生 [14]。Nrf2 信号转导的阴暗面在癌症干细胞中也有描述。激活的 Nrf2 可减少 ROS 的产生并对药物产生抵抗性 [15]。作为转录因子,Nrf2 通过基因编辑技术促进了癌症干细胞的肿瘤生成 [16]。在本研究中,我们研究了肝癌细胞对索拉非尼耐药的机制,重点研究了 Nrf2 信号通路。我们检查了索拉非尼耐药的肝癌细胞