基于设备。我们已经透露,由PBDB-T-2F(也称为PM6)和Y6组成的代表性高效率基于NFA的OSC,分别作为电子供体和受体,尽管较小的能量效率均具有较小的能量,但仍表现出近乎统一的和温度的电荷分离效率。15然而,在多大程度上可以最大程度地降低能量量,同时尚不清楚高电荷光电生成量子的效率。在电荷转移的Marcus描述中,对于有效的电荷分离,8,14,16的能量量减少不可避免地是不利的。17 - 19实际上,由PBDB-T-2F与Y5配对的OSC表现出较差的光伏外部量子效率(EQE PV)为36.1%,而该设备的D V型V型较小的PBDB-T-2F:Y6设备的d v小于80 mV,而较小的能量越来越较小的能量O e Y6设备。20
III-V 族胶体量子点 (CQDs) 是用于光电应用的有前途的材料,因为它们避免了重金属,同时实现了从可见光到红外 (IR) 的吸收。然而,III-V CQDs 的共价性质要求开发新的钝化策略来制造用于光电器件的导电 CQD 固体:这项工作表明,先前在 II-VI 和 IV-VI 量子点中开发的使用单个配体的配体交换不能完全钝化 CQD,并且这会降低设备效率。在密度泛函理论 (DFT) 模拟的指导下,这项工作开发了一种共钝化策略来制造砷化铟 CQD 光电探测器,该方法采用 X 型甲基乙酸铵 (MaAc) 和 Z 型配体 InBr 3 的组合。这种方法可保持电荷载流子迁移率并改善钝化效果,斯托克斯位移减少 25%,第一激子吸收线宽随时间推移的增宽率降低四倍,并使光致发光 (PL) 寿命增加一倍。所得器件在 950 nm 处显示 37% 的外部量子效率 (EQE),这是 InAs CQD 光电探测器报告的最高值。
混合壁cl/br钙钛矿提供了在蓝色区域中发射最便利的方法。然而,由于这些系统通常遭受严重的诱捕非辐射性损失,因此薄膜的光发光量子产率(PLQY)相对较低(<40%),这是其最终的LED效率。[19-23]此外,由于钙钛矿材料的离子性质,在外部刺激(电场,光辐射和热加热)下,通常在混合卤化物钙钛矿中观察到卤化物离子的迁移,从而导致偏移发射光谱和材料分解。[14,15,24]此外,卤离子离子的迁移可以实现相位分离,这增加了高性能和操作稳定的混合甲基甲虫LED的另一个障碍。[25–30]考虑到这一点,已经用混合壁蓝的钙钛矿LED进行了分解。Zhong和同事成功地制定了一种双重配体策略,以精确控制有效的蓝色混合甲基钙钛矿LED的尺寸,在473 nm的发射波长下,EQE为8.8%。[31]高
胶体量子点 (CQDs) 因其可调带隙和溶液处理特性,是用于红外 (IR) 光检测的有前途的材料;然而,到目前为止,CQD IR 光电二极管的时间响应不如 Si 和 InGaAs。据推测,II-VI CQD 的高介电常数会导致由于屏蔽和电容而导致的电荷提取速度变慢,而 III-V 族(如果可以掌握其表面化学性质)则可提供低介电常数,从而增加高速操作的潜力。在初步研究中发现,砷化铟 (InAs) 中的共价特性会导致不平衡的电荷传输,这是未钝化表面和不受控制的重掺杂的结果。报道了使用两性配体配位进行表面管理,并且发现该方法同时解决了 In 和 As 表面悬空键。与 PbS CQD 相比,新型 InAs CQD 固体兼具高迁移率(0.04 cm 2 V − 1 s − 1),介电常数降低了 4 倍。由此产生的光电二极管实现了快于 2 ns 的响应时间——这是之前报道的 CQD 光电二极管中最快的光电二极管——并且在 940 nm 处具有 30% 的外部量子效率 (EQE)。
摘要:一种新型的杂酵母(III)乙酰乙酸(ACAC)复合物,(L-5-CHO)2 IR(ACAC)(3B)(3B),是由2-(9'-己基碳唑-3'-3'-y-yly)合成的 - 5-5-5-甲基甲基)-5-甲基甲基吡啶(L-5-Cho)。复合物3b被确定为热化学稳定。研究了该化合物的光致发光特性,3B的二氯甲烷溶液在662 nm处产生无结构的发射,表明与父络合物相比,甲基基团红移151 nm。复合物3b也显示出具有中等的光致发光量子产率(67%)和短发射寿命(= 280 ns)。有机发光二极管(OLEDS)用由聚(N-乙烯基碳水化合物)(PVK),2-(4-tert-叔丁基苯基)-5-(4-二苯基)-1-1,1,3,4-4-oxadia-oxadia-oxadiazole(PBD)组成的溶液加工的发射层(EML)制造。含有复合物3b的OLED在624 nm处显示出红橙发光(EL)。研究了宿主材料的影响,并在发射层中使用PVK和PBD达到了最佳性能,结果OLED的当前效率为0.84 CD/A,功率效率为0.20 Lm/w,外部量子效率(EQE)的功率为0.66%,为2548 CD/M M 22548 CD/M M 2546%。
窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
提出了两个多弹性热激活的延迟荧光(MR-TADF)发射器,并显示了如何进一步的深蓝色MR-TADF Emitter(didobna-n)的blueShifts,blueshifts,并缩小产生新的近乎UV的MR-TADDF EMitter,MESB-DIDOBNA-N,MESB-DIDOBNA,MESB-DIDOBNA-N。didobna-n发出明亮的蓝光(𝚽 pl = 444 nm,fwhm = 64 nm,𝚽 pl = 81%,𝝉 d = 23 ms,tspo1中的1.5 wt%)。基于此扭曲的MR-TADF化合物的深蓝色有机发光二极管(OLED)显示,CIE Y的设备为0.073的设备的最大最大外部量子效率(EQE MAX)为15.3%。融合的平面MR-TADF发射极,MESB-DIDOBNA-N显示出近量的较小和窄带(𝝀 pl = 402 nm,fWHM = 19 nm,𝚽 pl = 74.7%,𝝉 d = 133 ms,TSPO1中的1.5 wt%)。掺有共同主持人的MESB-DIDOBNA-N最好的OLED显示出近紫外OLED的最高效率为16.2%。以0.049的CIE坐标为0.049,该设备还显示了迄今为止MR-TADF OLED的最蓝EL。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
摘要:短波红外胶体量子点 (SWIR-CQD) 是能够跨 AM1.5G 太阳光谱进行收集的半导体。当今的 SWIR-CQD 太阳能电池依赖于旋涂;然而,这些薄膜的厚度一旦超过 ∼ 500 nm,就会出现开裂。我们假定刮刀涂覆策略可以实现厚 QD 薄膜。我们开发了一种配体交换,并增加了一个分解步骤,从而能够分散 SWIR-CQD。然后,我们设计了一种四元墨水,将高粘度溶剂与短 QD 稳定配体结合在一起。这种墨水在温和的加热床上用刮刀涂覆,形成了微米厚的 SWIR-CQD 薄膜。这些 SWIR-CQD 太阳能电池的短路电流密度 (Jsc) 达到 39 mA cm − 2,相当于收集了 AM1.5G 照明下入射光子总数的 60%。外部量子效率测量表明,第一个激子峰和最接近的法布里-珀罗共振峰均达到约 80% 这是在溶液处理半导体中报道的 1400 nm 以上最高的无偏 EQE。关键词:红外光伏、量子点、配体交换、刀片涂层■ 介绍
摘要:研究了多孔硅 (PS) 表面二氧化硅 (SiO 2 ) 阳极形成过程中的光伏效应,旨在开发一种潜在的钝化技术,实现高效的纳米结构硅太阳能电池。PS 层是在含氢氟酸 (HF) 的电解质中通过电化学阳极氧化制备的。在室温下,在 HCl/H 2 O 溶液中通过自下而上的阳极氧化机制在 PS 表面形成阳极 SiO 2 层。通过调节阳极氧化电流密度和钝化时间来精确控制表面钝化的氧化层厚度,以在 PS 层上实现最佳氧化,同时保持其原始纳米结构。PS 层微观结构的 HRTEM 表征证实了 PS/Si 界面处的原子晶格匹配。研究了光伏性能、串联电阻和分流电阻对钝化时间的依赖关系。由于 PS 表面钝化充分,阳极氧化时间为 30 秒的样品实现了 10.7% 的最佳转换效率。外部量子效率 (EQE) 和内部量子效率 (IQE) 表明由于 PS 的抗反射特性,反射率显著下降,而由于 SiO 2 表面钝化,则表明性能优越。总之,PS 太阳能电池的表面可以通过电化学阳极氧化成功钝化。