48。R。Ionicioiu,A。Hamma和P. Zanardi,《纠缠,区域定律与群体理论》,《量子信息处理:从理论到实验》,D.G。Angelakis,M。Christandl,A。Ekert,A。Kay和S. Kulik(编辑),iOS Press 2006,pp。175-179(北约ASI的论文集,量子计算和信息QCI 2005,2005年5月2日至13日,Chania,Crete,Heece)。
第一个QKD协议是由Bennett和Brass-Ard在1984年提出的[3],称为BB84协议。这采用单个光子的四个极化状态来编码随机键。SHOR,PRESKILL等人完成了严格的安全证明。[4]。第一个基于纠缠的利益是E91方案,Ekert于1991年提出[5]。一般而言,QKD供应托式的实现可以分为两类:制备量化QKD协议,例如BB84,其中一个方在光量子状态下将随机键赋予随机键,并发送到接收器的接收器,其中键被解码[6];以及基于纠缠的QKD协议,例如E91协议,其中Alice准备纠缠的状态并与BOB共享一个州的一方,并且测量结果生成随机键[6]。
量子密钥分布(QKD)的目的是给出两个当事方 - Alice&Bob - 在共享量子通道时产生秘密密钥的可能性。例如,在Ekert [8]提出的实现中,该通道由产生分配给Alice&Bob的纠缠粒子的来源组成。在每个回合中,爱丽丝和鲍勃的每个粒子都通过在几个测量设置中选择一个粒子来测量一个粒子。主张爱丽丝的测量结果是安全的,即任何第三方 - 夏娃 - 可能控制量子通道的未知,可以通过推断(从爱丽丝和鲍勃的测量结果中)来保证,源源发射的状态接近纯的两部分纠缠状态。这可以确保鲍勃的结果与爱丽丝的结果选择相关,如果他选择了适当的测量设置,即爱丽丝和鲍勃的措施结果可以形成秘密钥匙。
量子密钥分发 (QKD) 的目的是使两方(Alice 和 Bob)能够在共享量子信道时生成密钥。例如,在 Ekert [ 1 ] 提出的实现中,信道由一个产生纠缠粒子的源组成,这些粒子被分发给 Alice 和 Bob。在每一轮中,Alice 和 Bob 各自从几种测量设置中选择一个来测量一个粒子。通过推断(从 Alice 和 Bob 的测量结果中)源发射接近于纯二分纠缠态的状态,可以保证 Alice 的测量结果是安全的,即任何可能控制量子信道的第三方(Eve)都不知道。这同时确保了如果 Bob 选择适当的测量设置,Bob 的结果与 Alice 的结果相关,即 Alice 和 Bob 的测量结果可以形成密钥。
摘要 我们研究了一种量子密码学,该密码学基于一种使用纠缠态同时确定布尔函数的所有映射的算法。我们的密码学的安全性基于使用纠缠态的 Ekert 1991 协议。窃听会破坏纠缠。Alice 从多种可能的函数类型中选择一个秘密函数。Bob 的目标是在不让窃听者知晓的情况下确定所选函数(密钥)。为了使 Alice 和 Bob 都能以经典方式选择相同的函数,在最坏的情况下,Bob 需要向 Alice 进行多次查询。然而在量子情况下,Bob 只需要一次查询。通过测量 Alice 发送给他的单个纠缠态,Bob 可以获得 Alice 选择的函数。与经典情况下所需的多次查询相比,这种量子密钥分发方法更快。
摘要 我们提出了一种量子密码学,该密码学基于一种使用连续变量纠缠态确定函数的算法。我们的密码学的安全性基于使用纠缠态的 Ekert 1991 协议。窃听会破坏纠缠态。Alice 从大量可能的函数类型中选择一个秘密函数。Bob 的目标是在不让窃听者知晓的情况下确定所选函数(密钥)。为了使 Alice 和 Bob 都能以经典方式选择相同的函数,在最坏的情况下,Bob 需要向 Alice 发出大量查询。然而在量子情况下,Bob 只需要一次查询。通过测量 Alice 发送给他的单个纠缠态,Bob 可以获得 Alice 选择的函数。这种量子密钥分发方法比经典情况下所需的大量经典查询更快。
量子密钥分布(依赖量子机械资源的随机秘密密钥)是安全量子网络的核心特征。基于纠缠的协议可通过量子中继器提供额外的安全性和规模,但是在光子源上设置的严格要求已经使他们的使用情况迄今使用了。在这种情况下,基于半导体的量子发射器是一个有前途的解决方案,可确保按需以记录的多光子发射的方式生成近乎统一的纠缠光子,后者的功能与一些最佳的窃听攻击相反。在这里,我们使用连贯驱动的量子点在实验上证明了一种经过修改的Ekert量子键分布协议,具有两种量子通道方法:既有250米长的单模纤维,又在自由空间中,连接了罗马萨皮恩扎大学校园内的两座建筑物。我们的现场研究强调,量子点纠缠的光子源已准备好超越实验室实验,从而为现实生活中的量子通信开辟了道路。
引言量子协议领域的研究已经得到了广泛的开展。在量子密码学领域,Ekert [1]使用两个EPR量子比特(Einstein、Podolsky、Rosen)的状态作为状态紧密性测试器,并在Bennet通信协议[2]中通过单粒子和双粒子算子共享这个EPR。1993年,Bennet等人[3]首次提出了通过EPR通道进行一个量子比特状态的量子隐形传态的理论协议。量子隐形传态是通过划分量子纠缠态和涉及一些非局部测量的经典态,在发送者(Alice)和接收者(Bob)之间的不同地方发送任意数量的无法识别的量子比特的过程。一般来说,Alice中的非局部测量采用射影测量,而Bob中的非局部测量则是幺正操作。还有一些协议,其非局部测量是通过 Aharanov 和 Albert [4] 的方法实现的,Kim 等人 [5] 的实验和 Cardoso 等人 [6] 的工作中实现了非线性相互作用,这些相互作用利用了状态源腔和通道源之间的共振。对于任意两个比特的纠缠态,量子通道的选择是通过 Schmidt 分解测试 [23] 获得的,而在多立方体中,则是通过其约化密度矩阵的秩值的组合 [24] 获得的。
量子力学是研究自然界中最小事物的学科。在 1927 年的索尔维会议上,29 位杰出的物理学家齐聚一堂,讨论当今量子理论的基础。与会者包括阿尔伯特·爱因斯坦、玛丽·居里、马克斯·普朗克、尼尔斯·玻尔和埃尔温·薛定谔。在他们的帮助下,对量子力学的理解使我们能够开发出许多现代技术,包括 MRI 扫描仪、核能、激光、晶体管和半导体 [1]。多年后的 1980 年,利用量子力学原理进行计算的设想应运而生。Benioff [2] 通过提供图灵机的薛定谔方程描述,证明了计算机可以根据量子力学定律运行。1988 年,Yamamoto 和 Igeta 提出了量子计算机的第一个物理实现,它包括经典门的量子等价物 [3]。1991 年,Artur Ekert 发明了基于纠缠的安全通信 [4]。 1998 年,琼斯和莫斯卡在牛津大学建造了一台可运行的 2 量子比特量子计算机 [5]。这是量子算法的首次实验演示。从那时起,量子设备取得了长足的进步。2007 年,瑞士使用量子技术来保护其投票系统 [6]。在日本,2010 年,使用量子密钥加密技术保护了电视会议 [7]。中国铺设了一条 2000 公里长的光纤
摘要。Quantum Flytrap 的 Virtual Lab 是一个无代码的光学桌在线实验室,以交互和直观的方式呈现量子现象。它支持最多三个纠缠光子的实时模拟。用户可以使用拖放式图形界面放置典型的光学元件(例如分束器、偏振器、法拉第旋转器和探测器)。Virtual Lab 以两种模式运行。沙盒模式允许用户组合任意设置。Quantum Game 是 Virtual Lab 功能的入门,适合没有接触过量子力学的用户。我们介绍了纠缠态和纠缠度量的可视化表示。它包括 ket 符号的交互式可视化和量子算子的热图式可视化。这些量子可视化可以应用于任何离散量子系统,包括具有量子位和自旋链的量子电路。这些工具以开源 TypeScript 包的形式提供 - Quantum Tensors 和 BraKetVue。虚拟实验室可以探索量子物理的本质(状态演化、纠缠和测量)、模拟量子计算(例如 Deutsch-Jozsa 算法)、使用量子密码术(例如 Ekert 协议)、探索违反直觉的量子现象(例如量子隐形传态和违反贝尔不等式),以及重现历史实验(例如迈克尔逊-莫雷干涉仪)。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物的出处,包括其 DOI。[DOI:10.1117/1.OE.61.8.081808]