提出的工作描述了一个简单的无标签电化学免疫传感器,用于测定四环素(TC)。传感器的功能是基于在金电极表面自组装的抗体终止的硫醇层的电绞件,用作介电膜。电绞件的强度与通过其特异性抗体捕获的TC量相关,并以电容势力曲线的形式遵循。使用电化学阻抗光谱(EIS)优化了免疫传感器结构的过程。优化了硫醇的化学吸附时间,TCAB固定的持续时间及其浓度。发达的免疫传感器在两个浓度范围内表现出线性响应:从0.95到10 l mol L –1,从10到140 l mol L –1,平均敏感性为6.27 nf L mol 1 L(88.67 nf l l cm 1 L CM 2)和0.56 Nf L mol 1 L(0.56 Nf L mol 1 L(7.84 nf Lol Mol 1 l Mol 1 L Mol 1 L Mol 1 L Mol 1 L Mol 1 L c)。检测限为28 nmol l 1。研究了所提出的传感器针对其他抗生素,阿莫西林和西帕曲霉蛋白的特定凹槽。免疫传感器已成功用来以片剂形式和河水基质量化TC。2019年作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
设备,我们的汽车和太阳能电池板系统等。7,8对Libs有很大的需求,而Libs的重要性是由于其生产率的稳定增长和不断增长的市场份额而得到了依赖。尤其是对绿色运输需求的增加导致几乎完全在LIB上运行的电动车辆(EV)数量增加。据估计,在未来十年中,全球LIB需求预计每年将从每年300 gwh增至2000 gwh,而电动乘用车则具有重要意义。9根据一项调查,2019年2月,世界上有超过560万辆电动汽车,预计到2040年,全球销售的所有汽车中有58%将是电动汽车。近年10年11月,对电动汽车的需求迅速增加; 2021年,欧洲道路上约有550万辆电动汽车,是2019年股票的三倍以上,到2030年,全球EV eet预计将达到750万。2,12因此,Lib阴极材料的年生产能力每年至少为40 GWH,即200 000吨。13,14估计,在2030年生命终结的总质量将超过250 m吨。15用过的液化液包含关键材料,例如钴(5-20%),镍(5-10%),锂(5-7%)和其他金属,以及铜,铝,铁和锰(5-10%),16,17,因此,这种生产规模和将要退休的炮台数量,
本综述全面概述了集成光学和电化学方法的双域生物传感解决方案的最新发展,明确侧重于基于光纤的技术。由于其显著的优势,化学和生物传感中光学和电化学域的集成越来越受到关注。本综述探讨了这些光电化学方法在各个领域的应用,包括医疗诊断和环境监测。它涵盖了一系列技术,例如光谱电化学、表面等离子体共振、有损模式共振、长周期光纤光栅和干涉测量法。此外,本综述深入探讨了传感器设计的关键方面,特别强调了这些传感器对多域传感的适应性。讨论旨在清楚地解释这些集成技术如何促进化学和生物传感的进步。
柔性且可拉伸的生物电子学提供了电子和生物系统之间的生物相容性界面,并受到了对各种生物系统的现场监测的极大关注。有机电子中的巨大进展已使有机半导体以及其他有机电子材料,由于其潜在的机械合规性和生物相容性,用于开发可穿戴,可植入和生物相容性电子电路的理想候选者。有机电化学晶体管(OECT)作为新兴的有机电子构建块,由于离子性质在开关行为,低驾驶电压(<1 V)和高跨导能(在毫米范围内)而引起的生物传感具有显着优势。在过去的几年中,据报道,生化和生物电传感器构建富裕/可拉伸OECT(FSOECTS)方面的显着进步。在这方面,为了总结这一新兴领域的重大研究成就,本综述首先讨论了FSOECT的结构和关键特征,包括工作原理,材料和建筑工程。接下来,总结了FSOECT是关键组成部分的各种相关的生理传感应用。最后,讨论了进一步推进FSOECT生理传感器的主要挑战和机会。
在本研究中,我们分析了锂离子电池的局部非线性电化学阻抗谱 (NLEIS) 响应,并从测量的 NLEIS 数据中估算模型参数。该分析假设单粒子模型包括电极粒子内锂的非线性扩散和其表面的不对称电荷转移动力学。基于此模型并假设一个中等较小的激励幅度,我们系统地推导出直至二次谐波响应的阻抗的解析公式,从而可以根据模型中的物理过程和非线性对每个贡献进行有意义的解释。我们探讨了这对参数化的影响,包括使用最大似然进行结构识别分析和参数估计,同时使用了合成和实验测量的阻抗数据。可以精确拟合阻抗数据,但拟合的扩散时间尺度的不一致性表明非线性扩散模型可能不适用于所考虑的电池。还通过使用参数化模型预测时域电压响应来证明模型验证,并且结果表明这与测量的电压时间序列数据 (11.1 mV RMSE) 具有出色的一致性。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发 (CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/ 1945-7111/acada7 ]
电化学基因传感器技术的发展与纳米科学一起成为科学界最令人兴奋的领域之一,实验发展受到对新技术应用的迫切需求的推动。开发用于灵敏和特异性检测生物分子的高效电化学基因传感器对于基础生物医学研究和临床诊断都至关重要。由于零维量子点具有优异的性能,例如比高维结构(即块体、量子阱和量子线)具有更高的态密度、[1] 优异的传输和光学特性、[2,3] 异常高的表面体积比、[4] 窄且尺寸可调的发射光谱、多功能表面改性、连续吸收光谱和独特的电化学活性,[5–7] 零维量子点被认为是开发具有高灵敏度、良好特异性和简单性的高效基因传感器的一种有利且有前途的替代方案。这意味着可以用一系列传感元件(如 DNA、肽和抗体)轻松修饰量子点表面,以构建有用的量子点标记探针/传感器。该传感器主要由通过连接器固定在电极上的 QD 组成,因此当受到激发时,
摘要:冰模板法 (ITM) 引起了人们对各种材料电化学性能改善的极大关注。ITM 方法相对简单,可以产生具有优异传质性能的分级多孔结构,并且独特的形态已被证明可以显著提高电化学性能,使其成为一种有前途的储能和转换应用方法。在这篇综述中,我们旨在概述 ITM 及其在电化学储能和转换领域的应用。我们将讨论 ITM 的基本原理以及影响所得结构形态和性能的因素。然后,我们将继续全面探索 ITM 在制造用于超级电容器、电池和燃料电池的高性能电极中的应用。我们打算找到 ITM 使用方面的关键进展,并评估其克服高效储能和转换系统开发中现有挑战的潜力。
摘要:在本文中,我们研究了由PEDOT:PSS/石墨烯组成的复合材料的潜在应用,该复合材料通过喷雾涂层沉积在柔性底物上,作为一种自动导电膜,用于在可穿戴生物传感器设备中应用。PEDOT:PSS/石墨烯的稳定性通过电化学障碍光谱(EIS),环状伏安法(CV)和线性极化(LP)进行评估,而在人造汗液电解质中暴露于人造汗液中,而扫描电子显微镜(SEM)则用于调查以下这些层中的文学变化。结果表明,层在-0.3至0.7 V相比Ag/agCl的电势范围内表现出主要的电容性行为,截止频率约为1 kHz,在500个周期后保持90%的容量。在暴露于空气中的衰老6个月仅导致阻抗的略有增加,这表明在不需要的条件下存储潜力。然而,对人造汗液的长时间暴露(> 48 h)会导致明显的降解,从而导致阻抗增加超过1个数量级。观察到的降解引发了这些层在可穿戴生物传感器应用中的长期生存能力的重要考虑因素,从而促使在长时间使用过程中需要采取其他保护措施。这些发现有助于持续的努力,以增强医疗保健和生物技术应用中生物传感器的稳定性和可靠性。
重整 (SMR) 为哈伯-博施法提供 H 2 气作为原料。利用来自可再生技术的电力进行电化学 H 2 生产及其后续利用可以成为“绿色 NH 3 ”的来源。尽管用于绿色 H 2 生产 的聚合物电解质膜 (PEM) 电解器的效率和稳定性已经有了显着发展,但每吨氨至少需要 30.3-35.3 GJ,运行效率甚至高达 60-70%。此外,使用空气分离装置和哈伯-博施环路压缩机供应 N 2 以进行使用绿色 H 2 的哈伯-博施法,每吨氨还需要 2.7 GJ 的 N 2 生产。这些成本目前仍然高于传统的哈伯-博施法(低于每吨氨 30 GJ)。 54,55 在这方面,电化学氮还原 (NRR) 近来引起了全球研究兴趣,以生产 NH 3 作为哈伯-博施法的替代品。迄今为止,该法产量低(低于 3·10·10 mol s 1 cm 2 )且法拉第效率 (FE,低于 10%),受到 NRN 键强度 (941 kJ mol 1 )、N 2 在水溶液中的溶解度差(环境条件下为 0.66 mmol L 1 )以及竞争性析氢反应 (HER) 的挑战。7,8
真正的能源供应安全是我们加速向可持续能源模式转型的最终和决定性原因(好像气候紧急情况、化石燃料枯竭和污染汽车引发的疾病还不够)。可再生能源在我们的能源结构中的份额必须不断增长,无论是集中式还是分布式发电。只有同时采取一致行动进行能源储存以补偿太阳能和风能的间歇性,这种增长才有可能。然而,直到上个十年,能源储存一直是全球能源循环中被忽视的一部分。世纪之交标志着锂离子电池(LIB)作为消费电子产品的终极供电技术的应用。但现在,我们正目睹能源储存种类的寒武纪大爆发,因为当今的需求范围从电子设备中微型一劳永逸的超级电容器,到电动汽车电池、可再生能源储存以及用于电网平衡的超级电容器和电池。因此,随着我们的需求变得更加多样化,我们对储存能源的依赖也随之增加,我们需要做出创造性的努力来正确