研究将利用积分方程方法准确地模拟大脑,头骨和头皮之间的电磁相互作用,通过自然结合边界条件并处理具有高忠诚度的复杂几何形状,从而对基于微分方程的技术进行了显着改进。高性能计算(HPC)技术将采用与大规模仿真相关的计算复杂性,以确保有效且可扩展的解决方案。通过开发高级数值求解器和优化技术,该项目旨在为非侵入性脑成像提供强大的框架,实现与侵入性方法(例如电皮质学(ECOG))和立体杂志等侵入性方法相媲美的解决方案。这项研究的结果将有助于更广泛的生物医学成像和电磁逆问题,为改善神经系统疾病的诊断能力铺平了道路。该项目是与Cerebro Project合作进行的,该项目旨在通过创新的对比媒体和微流体技术彻底改变脑电图成像。将计算电磁学与这些进步的整合将在没有入侵程序的高分辨率,全脑成像中起着至关重要的作用。
[59] D. Tua,R。Liu,W。Yang,L。Zhou,H。Song,L。Ying,Q. Gan,基于等离子体的“ Rainbow”芯片,用于双功能智能光谱仪,电磁研究旨在介绍的进展,2024年4月,邀请演讲)。[58] S. dang,Y。Tian,H。H. Almahfoudh,H。Song,O。M. Bakr,B。S. Ooi,Q。Gan,Qu. Gan,地面辐射冷却,用于高功率LED灯,电磁研究研讨会的进展,2024年4月2024年4月。[57] L.[56] D. Tua,R。Liu,L。Zhou,W。Yang,H。Song,L。Ying,Q. Gan,用于智能光谱仪的等离子“ Rainbow”芯片,Cleo 2023,STH3R.5。[55] L. Zhou,H。Song,Q. Gan,等离子“ Rainbow”用于超分辨率位移光谱分析和表面生物传感,CLEO 2023,FF1C.3。[54] J. Rada, H. Hu, L. Zhou, J. Zeng, H. Song , X. Zeng, S. Shimul, W. Fan, Q. Zhan, W. Li, L. Wu, Q. Gan, Microscale concave interfaces for reflective displays generate concentric rainbows, Frontiers in Optics 2022, JTu5B.49。[53] Y. Liu,N。Zhang,D。Tua,Y。Y.2。[52] L. Zhou,J。Rada,H。Zhang,H。Song,B。S。Ooi,Q. Gan,可持续多孔的多孔聚二甲基硅氧烷,用于有效的辐射冷却,Cleo 2022,JW3A。10。5。[51] L. Zhou,H。Song,N。Zhang,J。Rada,M。H. Signer,Q。Gan,Q。Gan,一种双面辐射冷却结构,具有创纪录的局部冷却功率密度为270 W/m 2,Cleo 2021,JW2G,JW2G。[50] Y. Liu,H。Song,M。H. Singer,C。Li,D。Ji,L。Zhou,N。Zhang,N。Zhang,Z。Bei,Q。Gan,Q。Gan,Black Tio 2 on Nanopororoloordorordololololololtorquentrates,用于改进太阳能蒸气生成,Cleo 2020,AF3N.6。[49] L. Zhou,H。Song,J。N. Rada,M。H. Singer,H。Zhang,B。S. Ooi,Z。Yu,Q. Gan,spectrassival-spectry-seption-seplective镜子,用于双层辐射冷却,Cleo 2020,2020年,AF3N.5。[48][47] H. Song,W。Wei,J。Liang,P。Maity,O。F. Mohammed,B。S. Ooi,D。Liu,D。Liu,Q. Gan,使用超薄TIO TIO 2光催化膜在纳米腔的纳米腔上降低了CO 2,Cleo 2019,Ath1i.3。[46] L.
• 获得欧盟 ERC 资助“321:计算电磁学中从立方 3 到 2 线性 1 的复杂性”。 (ERC Consolidator Grant 2016,200 万欧元)。 • 在国际 ISI 期刊上发表或印刷论文 50 篇,评审论文 4 篇,同行评审会议论文 90 篇,受邀投稿 23 篇。 • 获得超过 15 个科学出版物奖项和荣誉。 • 获得 2015 年 EurAAP Leopold B. Felsen 电动力学杰出奖 • 获得 URSI Issac Koga 金奖(三年期,2014-2016 年)。 • 获得 IEEE AP-S Donald G. Dudley 本科教学奖。 • IEEE APM 主编、IEEE TAP 跟踪编辑、其他 4 种期刊(2 种来自 IEEE:IEEE AWPL 和 IEEE Access)副主编、19 种 ISI 期刊审稿人。 • 5 名博士生和 3 名博士后的导师。8 名已毕业博士生(3 名现为教职员工)的前导师。 • 8 个国内和国际研究项目的现任和前任首席研究员(过去四年的个人预算超过 430 万欧元)。
a 美国马里兰州盖瑟斯堡 NIST 物理测量实验室辐射物理部 b 美国马里兰州盖瑟斯堡 NIST 物理测量实验室传感器科学部 c 美国科罗拉多州博尔德 NIST 物理测量实验室量子电磁学部 * 通讯作者。电子邮件地址:ryan.fitzgerald@nist.gov 摘要 随着最近根据自然常数对 SI 基本单位的重新定义,人们开始竞相通过制定基于量子计量的主要标准来最大限度地提高可实现的精度,从而实现量子 SI。对于贝克勒尔 (Bq) 和格雷 (Gy)(分别表示活度和吸收剂量的派生 SI 单位)来说,这尤其具有挑战性,因为在原子尺度上难以管理电离辐射的产生和检测,并且量子相干性很容易在伴随物质中高能粒子减速的一系列非弹性过程中丢失。这并不妨碍量子计量在追求单事件检测和微观尺度辐射效应分辨率方面发挥次要作用,我们开始应用新的过渡边缘传感器、硅光子学和量子电标准。在这里,我们总结了微量热法在活动和剂量测量方面的最新成果,并讨论了它们作为下一代标准的潜力。
Zachariah Peterson 拥有南俄勒冈大学和波特兰州立大学的多个物理学学位,并获得了亚当斯州立大学的工商管理硕士学位。2011 年,他开始在波特兰州立大学任教,同时攻读应用物理学博士学位。他的研究工作最初侧重于随机激光器、随机材料中的电磁学、金属氧化物半导体、传感器和激光物理学中的精选主题;他还发表了十多篇同行评审的论文和论文集。在学术界工作一段时间后,他开始在 PCB 行业担任设计师和技术内容创建者。作为一名设计师,他的经验主要集中在商业和军用航空应用的高速数字系统和 RF 系统。他的公司还为主要 CAD 供应商制作技术内容,并为这些客户提供技术战略咨询。总的来说,他已经撰写了 2,000 多篇关于 PCB 设计、制造、仿真、建模和分析的技术文章。最近,他开始担任 Thintronics 的首席技术官,这是一家专注于高速、高密度系统的创新 PCB 材料初创公司。
Dave Walen 已经参与飞机电磁效应研究 20 年。他是 FAA 雷电和电磁干扰国家资源专家,于 1996 年加入 FAA。他参与了即将出台的 HIRF 规则和咨询材料的规则制定活动,并为 FAA 认证办公室提供电磁问题支持。在加入 FAA 之前,他在波音公司工作了 19 年,从事防雷设计、天线开发、HIRF 保护和电磁效应研究。他于 1977 年获得北达科他大学电气工程学士学位。他是电气和电子工程师协会会员、华盛顿州注册专业工程师和 NARTE 认证的电磁兼容性工程师。Walen 先生的电磁效应工作包括详细参与与电磁兼容性、飞机防雷、高密度辐射场保护和天线开发相关的分析、测试、保护设计和认证。他在波音公司的最后职位是波音民用飞机集团电磁和天线的工程师兼设备经理。他曾担任美国空军资助的为期四年的闪电研究合同的首席研究员。
Dave Walen 已经参与飞机电磁效应研究 20 年。他是 FAA 雷电和电磁干扰国家资源专家,于 1996 年加入 FAA。他参与了即将出台的 HIRF 规则和咨询材料的规则制定活动,并为 FAA 认证办公室提供电磁问题支持。在加入 FAA 之前,他在波音公司工作了 19 年,从事防雷设计、天线开发、HIRF 保护和电磁效应研究。他于 1977 年获得北达科他大学电气工程学士学位。他是电气和电子工程师协会会员、华盛顿州注册专业工程师和 NARTE 认证的电磁兼容性工程师。Walen 先生的电磁效应工作包括详细参与与电磁兼容性、飞机防雷、高密度辐射场保护和天线开发相关的分析、测试、保护设计和认证。他在波音公司的最后职位是波音民用飞机集团电磁和天线的工程师兼设备经理。他曾担任美国空军资助的为期四年的闪电研究合同的首席研究员。
四十多年前,频域电磁 (FDEM) 方法促成了首次航空电磁 (AEM) 发现。尽管早期面临来自时域技术的竞争,但 FDEM 尤其是直升机电磁 (HEM) 多年来蓬勃发展并多样化,成为采矿勘探的主要工具之一。随着传感器和解释技术的成熟,应用变得越来越定量,特别是在工程和环境任务中。为这些应用开发的 FDEM 方法的改进现在正应用于矿产勘探。校准精度和稳定性已成为这些定量调查数据解释质量的重要因素。随着技术的不断改进,诸如检测细微特征等困难的勘探问题(由于系统精度和分辨率不足而目前无法访问)正变得可处理。勘探人员和仪器/解释专家的共同努力对于这些新应用的开发至关重要。未来十年的技术改进可能包括系统硬件和软件的进一步集成、引入具有更宽光谱范围和密度的系统、增强校准能力、减少系统噪声和漂移以及更好地跟踪传感器方向。
摘要 — 当前的量子计算机 (QC) 属于嘈杂的中型量子 (NISQ) 类,其特点是量子比特嘈杂、量子比特能力有限、电路深度有限。这些限制导致了混合量子经典算法的发展,该算法将计算成本分摊到经典硬件和量子硬件之间。在混合算法中,提到了变分量子特征值求解器 (VQE)。VQE 是一种变分量子算法,旨在估计通用门量子架构上系统的特征值和特征向量。电磁学中的一个典型问题是波导内特征模的计算。按照有限差分法,波动方程可以重写为特征值问题。这项工作利用量子计算中的量子叠加和纠缠来解决方波导模式问题。随着量子比特数的增加,该算法预计将比传统计算技术表现出指数级的效率。模拟是在 IBM 的三量子比特量子模拟器 Qasm IBM Simulator 上进行的。考虑到基于计算的量子硬件测量,进行了基于镜头的模拟。以二维本征模场分布形式报告的概率读出结果接近理想值,量子比特数很少,证实了利用量子优势制定创新本征解法的可能性。
13.摘要(最多 200 个字)本报告描述了 AEDC 连续流高超声速风洞中用于静态稳定性、压力、传热、材料/结构、边界层过渡和电磁波测试的程序。由于定义高超声速飞行器的热环境非常重要,因此特别强调传热技术。概述了高超声速飞行器部件开发中使用的材料/结构测试方法。不幸的是,预测过渡的方法已经困扰了空气动力学家三十多年,并且仍有许多未解问题。本报告简要介绍了影响过渡的许多参数,并为有兴趣专门研究此主题的人提供了大量参考资料。讨论了使用三重球的方法,并提供了说明性数据。电磁波测试是一种相对较新的测试技术,它涉及多个学科的结合:气动热力学、电磁学、材料/结构和高级诊断。这项新技术的本质是处理电磁波(RF 或 IR)在通过以高超音速飞行的导弹的弓激波、流场和电磁(EM)窗口时的传输和可能的失真。14.主题术语 电磁波、导弹导引头系统、高超音速飞行器、边界层、瞄准线误差、机鼻雷达罩