Claudia Cancellieri 博士是 Empa 连接技术和腐蚀实验室的团队负责人/研究员。2008 年,她在洛桑联邦理工学院 (EPFL) 获得物理学博士学位,专门研究应变下铜氧化物和氧化物薄膜的脉冲激光沉积生长。在日内瓦大学的第一个博士后期间,她专注于复杂氧化物界面的生长和特性。她在同步加速器瑞士光源保罗谢尔研究所继续研究该主题,在那里她广泛使用光谱技术来推导埋藏复杂氧化物界面的电子能带结构。她目前的研究课题包括研究功能材料(包括多层系统)的微观结构、缺陷、应力和电子特性。
网站:https://www.empa.ch/web/s403/particlesbarrier https://scholar.google.ch/citations?user=cH5X5vAAAAAJ&hl=en OrcID:0000-0003-3723-6562 专业经历 2015 年 1 月至今 粒子@Barriers 小组组长和粒子-生物相互作用实验室副主任,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑 2012 年 5 月 - 2014 年 12 月 研究助理,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:P. Wick 博士 2008-2012 博士后研究员,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:HF Krug 博士 教育经历 2002-2006 博士,瑞士苏黎世瑞士联邦理工学院 (ETH) 细胞生物学研究所 博士论文:“脊椎动物神经系统髓鞘形成研究:cdc42、rac1 和 profilin 1 信号在少突胶质细胞和施万细胞生物学中的作用” 导师:U. Suter 教授、ME Schwab 教授、J. Relvas 博士 1998-2002 自然科学硕士ETHZ,瑞士苏黎世联邦理工学院 (ETH) 毕业论文:“肌浆网蛋白与肌酸激酶相互作用的表征” 导师:T. Wallimann 教授、T. Hornemann 博士 1994-1998 年 赫尔布鲁格康顿学院,瑞士赫尔布鲁格 毕业(Matura Type E:经济学) 研究资助 2020-2023 年 欧盟旗舰石墨烯 (Core3 阶段) 共同申请人(1.5 亿欧元/55 万欧元) 2018-2021 年 SNSF- 胎盘介导的纳米材料风险 PI(260 kCHF) 2018-2020 年 欧盟旗舰石墨烯 (Core2 阶段) 共同申请人(8800 万欧元/350 (230 kCHF) 2014-2017 BMBF- NanoUmwelt 共同申请人 (1.8 M€ / 180 k€) 2013-2017 第 7 届 FP EU Nanosolutions ( NMP .2012.1.3-1 ) 共同申请人 (10 M€ / 290 k€) 学生监督 (* 共同监督) Claudia Rust* (ETH, 硕士论文, 2003), Carina Muoth (ETH, 硕士论文, 2012), Erminio Di Renzo (ETH, 硕士论文, 2018), Angela Diaz (Uni Castilla-La-Mancha, 硕士论文, 2021), Lukas Schlagenhauf* (ETH, 博士论文, 2011-2015), Carina Mouth (UZH, 博士论文, 2013-2016), Leonie Aengenheister(ETH,博士生,2015-2018 年)、Claudia Hempt(ETH,博士论文,2017-2020 年)、Daria Korejwo(UNIFR,博士生,2017-2020 年)、Woranan Netkeakul*(ETH,博士生,2017 年至今)、Lea Furer(ETH,博士生,2018 年 10 月开始)、Battuja Batbajar Dugershaw(ETH,博士生,2018 年 10 月开始)、Julia Boos*(ETH,博士生,2019 年至今) 教学/课程 讲座 福拉尔贝格应用技术大学:微纳米技术硕士课程(被公认为奥地利最好的技术学位课程)2010-2011 年
其他学术职务 2005 – 2020 希腊开放大学“地震工程与抗震结构”项目“结构抗震设计”专题单位兼职教授。 2005-2020 年:上述专题单位协调员。 2016-2020 年:项目主任。 2009 – 2018 年 帕维亚 ROSE 学院 (地震工程与工程地震学研究生培训与研究中心) 和 UME (极端情况理解与处理) 中心教员。 2005 – 2018 年 伊拉斯谟世界计划 MEEES (欧洲地震工程与工程地震学硕士) 教员。 2011 – 2013 年帕特雷大学和罗马大学 Erasmus Mundus 项目 EU-NICE(欧亚大学地震国际合作网络)教职员工。1991 年和 1990 年暑期担任瑞士联邦材料测试与研究实验室 (EMPA) 客座教授。
交联聚合物(例如热固性塑料)是一类重要的高性能材料,用于交通运输或可持续能源生产等应用。在这个博士项目中,您将探索未来开发具有动态交联的更可持续热固性塑料的基本机制。我们是 Empa 的一个化学小组,拥有很高的科学卓越性,最近开发了基于磷化学的新型共价自适应网络 (CAN),从而实现了聚合物在统一解决方案中的防火和可回收性。这个跨学科项目涉及聚合物化学和物理学,由瑞士国家科学基金会 (SNSF) 资助。它也与根特大学合作。本项目中解决的科学问题将有助于理解 CAN 中的局部共价和非共价机制,并将它们与以后与技术应用相关的宏观特性相关联。
瑞士,2021年。21。研究演讲,ETH董事会,瑞士,瑞士2021。22。年轻教师会议,瑞士化学学会,瑞士伯尔尼,2021年。23。Eurotech研讨会系列,2021。24。研讨会,印度科学研究所,班加罗尔,2021年。25。研究演讲,扩展EPFL能源事件:碳捕获,利用和存储,2021。26。研讨会,国家石墨烯研究所,英国曼彻斯特,2021年。27。研讨会,IBM研究中心,巴西,2021年。28。研讨会,剑桥大学石墨烯中心,2021年。29。研讨会,分离技术研讨会,Yonsei University,2021。 30。 研究演讲,EPFL校友日,2020年。 31。 研讨会,埃克森美孚研究与工程,美国克林顿,2019年。 32。 研讨会,斯德哥尔摩大学,瑞典,2019年。 33。 研讨会,EidgenösscheMitalPrüfungs-und forschungsanstalt(Empa),瑞士,2019年。 34。 研讨会,英国伦敦帝国学院,2018年。 35。 ,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。 36。 Gaznat全球天然气会议,EPFL,Lausanne,2018年。 37。 研讨会,印度理工学院,印度孟买,2018年。研讨会,分离技术研讨会,Yonsei University,2021。30。研究演讲,EPFL校友日,2020年。31。研讨会,埃克森美孚研究与工程,美国克林顿,2019年。32。研讨会,斯德哥尔摩大学,瑞典,2019年。33。研讨会,EidgenösscheMitalPrüfungs-und forschungsanstalt(Empa),瑞士,2019年。34。研讨会,英国伦敦帝国学院,2018年。 35。 ,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。 36。 Gaznat全球天然气会议,EPFL,Lausanne,2018年。 37。 研讨会,印度理工学院,印度孟买,2018年。研讨会,英国伦敦帝国学院,2018年。35。,马萨诸塞州波士顿的马萨诸塞州理工学院,2018年。36。Gaznat全球天然气会议,EPFL,Lausanne,2018年。37。研讨会,印度理工学院,印度孟买,2018年。
1 1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,
摘要:申请人向萨斯卡通公共图书馆(SPL)提交了对信息请求的访问。根据第16(1)(a),17(1)(b),(d),(e),(f),(f)和28(1)的第16(1)(1)(b),(d),(f)和28(1)的SPL扣留部分的一部分。申请人要求专员审查SPL的第7节决定。SPL在提交中指出,它不再依赖于La Foip的第17(1)(e)小节来扣留记录的部分。A/专员发现,标题为“纠正措施计划”(CAP)的文件包含根据《环境管理和保护法》第83条(EMPA)的公共信息,因此,La Foip的豁免不得依赖于拒绝。A/专员建议SPL在发布本报告后的30天内将上限全部释放给申请人。在记录的其余部分中,A/专员发现SPL未正确应用La Foip的第16(1)(a),17(1)(b),(d)和(f)小节。A/专员建议SPL还会在发行本报告后的30天内全部发布记录的其余部分。
瑞士的能源领域正在经历重大变革,这是由当地和全球经济、技术和政治的变化引起的。这种变化在冬季寒冷的地区尤为明显,因为这些地区的能源需求会因供暖需求而达到峰值。太阳能等可再生能源不足以满足这种高需求,这引起了人们对创新高效的季节性能源储存解决方案的需求。吸附热储存是一种很有前途的解决方案。这种方法在 EMPA 和 HSLU 进行了广泛的研究,它使用氢氧化钠来创建紧凑而高效的系统,不会随着时间的推移而损失能量,作为化学驱动的热泵运行,在夏季充电,在冬季释放热量,同时将电力消耗降至最低。然而,这一研究领域存在一个明显的差距:需要一种可靠的方法来评估系统在更广泛的能源系统中的性能。
Annex 70 Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale: Martin Jakob ( martin.jakob@tep-energy.ch ), TEP Energy Annex 72 Assessing Life Cycle Related Environmental Impacts Caused by Buildings: Rolf Frischknecht ( frischknecht@treeze.ch ), Treeze Annex 75 Cost-effective District Level Building Renovation Strategies with Energy Efficiency and Renewables: Roman Bolliger(roman.bolliger@econcept.ch),Econcept Annex 79以乘员为中心的建筑设计和操作:Arno Schlueter,ETH; Dusan Licina,EPFL; Dolaana Khovalyg,EPFL附件82 Energy柔韧的建筑物,朝着弹性的低碳能源系统:FHNW的Monika Hall;罗马·鲁德尔(Roman Rudel),supsi; Kristina Orehounig,Empa附件83正能量区:Zhang,PSI - 热抽水技术(HPT TCP):Elena-LaviniaNiederhäuser,Stephan Renz(椅子)
瑞士联邦材料科学技术实验室(EMPA)的科学家的这份新报告强调,与(1)和(2)相关的容量损失可以通过创建人工阴极电解质相(CEI)层来减轻。他们使用分子层沉积(MLD)将岩石酮层直接生长到多孔的NMC811粒子电极上。在这项工作中,将岩石酮层与锂丁氧化锂(Liotbu)和乙二醇作为前体沉积,在Arradiance Gemstar TM TM XTM XT-P反应器中,偶联,与Argon-Flove Box偶联,在低反应器温度下,以避免了电极温的热降解。在基于Si晶片的高射线比结构上的膜厚度覆盖率从210nm线性下降到20:1纵横比的30-40Nm,这是尝试对该技术进行商业化的重要工程变量。尝试在实际电极上,碳颗粒的聚集(以NMC811颗粒之间提供电子接触)阻碍了MLD均匀的生长,从而导致岩石酮覆盖率较小。