摘要 — 经颅磁刺激 (TMS) 是一种非侵入性、有效且安全的神经调节技术,可用于诊断和治疗神经和精神疾病。然而,大脑组成和结构的复杂性和异质性对准确确定关键大脑区域是否接收到正确水平的感应电场提出了挑战。有限元分析 (FEA) 等数值计算方法可用于估计电场分布。然而,这些方法需要极高的计算资源并且非常耗时。在这项工作中,我们开发了一个深度卷积神经网络 (DCNN) 编码器-解码器模型,用于从基于 T1 加权和 T2 加权磁共振成像 (MRI) 的解剖切片实时预测感应电场。我们招募了 11 名健康受试者,并将 TMS 应用于初级运动皮层以测量静息运动阈值。使用 SimNIBS 管道从受试者的 MRI 开发头部模型。将头部模型的整体尺寸缩放至每个受试者的 20 个新尺寸尺度,形成总共 231 个头部模型。进行缩放是为了增加代表不同头部模型尺寸的输入数据的数量。使用 FEA 软件 Sim4Life 计算感应电场,将其作为 DCNN 训练数据。对于训练好的网络,训练和测试数据的峰值信噪比分别为 32.83dB 和 28.01dB。我们模型的关键贡献在于能够实时预测感应电场,从而准确高效地预测目标脑区所需的 TMS 强度。
摘要。图论分析已成为建模大脑功能和解剖连接的标准工具。随着连接组学的出现,主要感兴趣的图或网络是结构连接组(来自 DTI 纤维束成像)和功能连接组(来自静息态 fMRI)。然而,大多数已发表的连接组研究都集中在结构或功能连接组上,但当它们之间的互补信息在同一数据集中可用时,可以联合利用它们来提高我们对大脑的理解。为此,我们提出了一种功能约束的结构图变分自动编码器 (FCS-GVAE),它能够以无监督的方式整合来自功能和结构连接组的信息。这导致了联合低维嵌入,从而建立了一个统一的空间坐标系,用于跨不同主体进行比较。我们使用公开的 OASIS-3 阿尔茨海默病 (AD) 数据集评估了我们的方法,并表明变分公式对于最佳地编码功能性大脑动态是必不可少的。此外,与不使用互补连接组信息的方法相比,所提出的联合嵌入方法可以更准确地区分不同的患者亚群。
在各种 ADC 架构中,FLASH ADC 被证明是高性能 ADC。所提出的 ADC 由基于多路复用器的编码器、开环比较器和电阻梯形网络组成。所提出的 ADC 采用 90nm CMOS 技术进行模拟。所提出的 ADC 的主要优点是静态功耗低。这是通过将基于多路复用器的编码器集成到 Flash ADC 中实现的。所提出的 ADC 的功耗为 26.65µw,输入电压为 1V,频率为 100MHz。设计的 Flash ADC 可用于高速应用。
计算建模是现代药物发现的重要组成部分。其最重要的应用之一是选择有希望的药理学相关靶蛋白候选药物。由于结构生物学的不断进步,在与各种疾病相关的众多蛋白质中发现了小有机分子的假定结合位点。这些宝贵的数据为通过应用数据挖掘和机器学习来构建预测靶位结合分子的有效计算模型提供了新的机会。特别是,深度神经网络是一种强大的技术,能够从复杂数据中学习,从而做出明智的药物结合预测。在本文中,我们描述了 Pocket2Drug,这是一种深度图神经网络模型,用于预测给定配体结合位点的结合分子。这种方法首先从大量口袋结构数据集中通过监督训练学习小分子的条件概率分布,然后从训练模型中抽样候选药物。全面的基准模拟表明,与传统的药物选择程序相比,使用 Pocket2Drug 显著提高了找到与靶口袋结合的分子的机会。具体来说,已知结合物针对测试集中存在的多达 80.5% 的靶标生成,而测试集由与用于训练深度图神经网络模型的数据不同的数据组成。总体而言,Pocket2Drug 是一种很有前途的计算方法,可用于指导新型生物制药的发现。
磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
摘要 - 脑启发的高维(HD)计算是一种新的计算范式,可以模仿高维空间中神经元的活性。HD计算中的第一个步骤是将每个数据点映射到高维空间(例如10,000)中,该空间需要计算原始域中每个数据元素的数千个操作。单独编码大约需要培训执行时间的80%。在本文中,我们提出,REHD,用于HD Computing中的编码,培训和推断的整个重做,以实现更硬件友好的实现。REHD包括用于HD计算的完全二进制编码模块,用于能量良好和高智能分类。我们基于随机投影的编码模块可以在硬件中有效地实现可预测的内存访问模式。REHD是第一个基于HD的方法,它提供了与原始数据1:1比率的数据投影,并启用使用二进制HyperVector进行所有培训/推理计算。在优化后,重新添加了编码过程,重新培训和推断成为HD计算的能源密集型部分。为解决此问题,我们还提出了模型量化。模型量化引入了一种新型的方法,该方法是使用n位存储类高量向量的方法,其中n范围为1至32,而不是以完整的32位精度,从而可以在能量效率和准确性之间进行折衷的细节调整。为了进一步提高REHD效率,我们开发了一种在线尺寸缩小方法,可以消除训练期间无效的高度向量维度。
深度神经网络是生物医学图像分割的有力工具。这些模型通常经过严格监督训练,依赖于图像对和相应的体素级标签。然而,在大量情况下获得解剖区域的分割成本可能非常高。因此,迫切需要基于深度学习的分割工具,这些工具不需要严格监督并且可以不断适应。在本文中,我们提出了一种将分割视为离散表示学习问题的新视角,并提出了一种灵活且自适应的变分自动编码器分割策略。我们的方法称为分割自动编码器 (SAE),它利用所有可用的未标记扫描,并且仅需要分割先验,它可以是单个未配对的分割图像。在实验中,我们将 SAE 应用于脑部 MRI 扫描。我们的结果表明,SAE 可以产生高质量的分割,尤其是当先验良好时。我们证明马尔可夫随机场先验可以产生比空间独立先验更好的结果。我们的代码可在 https://github.com/evanmy/sae 免费获取。关键词:图像分割、变分自动编码器
摘要 - 心脏内脑机界面(BMIS)将神经活动转化为控制信号,以驱动假体或通信设备,例如机器人臂或计算机光标。在临床上可行,BMI解码器必须达到高准确性和鲁棒性。优化这些解码器是昂贵的,传统上需要动物或人类的实验跨越数年。这是因为BMI是闭环系统,用户在其中更新其电动机命令是为了响应不完美的解码输出。使用先前收集的“频线”数据的解码器优化将不会对此闭环响应进行计算。明显加速的解码器优化的另一种方法是使用闭环实验模拟器。该模拟器的关键组成部分是神经编码器,该神经编码器合成从运动学产生神经种群活动。先前的神经编码器并未模拟神经种群活动的重要特征。为了克服这些局限性,我们使用了深度学习的神经编码器。我们发现了这些模型在再现刺激性时间直方图(PSTHS)和神经popula posula todyics中的先验神经编码器上的表现非常优于先前的神经编码器。我们还发现,深度学习神经启动器可以更好地匹配神经解码,从而在频道数据和闭环实验数据中结果匹配。我们预计这些深度学习的神经编码器将大大改善BMI的模拟器,从而更快地评估,优化和BMI解码器算法的表征。
摘要:可逆逻辑门由于其低功耗而变得越来越重要,并且在低功耗设计中非常重要。另一方面,它具有低功耗并且可以应用于可逆逻辑。在本项目中,提出了一种基于可逆逻辑的 4x2 优先级编码器。基本上,可逆逻辑门包含 n×n 映射,因此我们可以轻松地从输入中检索输出。但是在普通的传统门的情况下这是不可能的。首先,该项目讨论了 Fredkin 门和通用可逆逻辑门 (URLG) 的设计。其次,该项目使用可逆逻辑门(Fredkin 和 URLG)来设计 4x2 优先级编码器。由于最大限度地减少了垃圾计数并减小了尺寸,因此选择它来设计 4x2 优先级编码器。
自动勾勒出脑磁共振图像 (MRI) 中异常的能力对计算机辅助诊断至关重要。无监督异常检测方法主要通过学习健康图像的分布并将异常组织识别为异常值来工作。在本文中,我们提出了一种切片检测方法,该方法首先在两个不同的数据集上训练一对自动编码器,一个数据集包含健康个体,另一个数据集包含正常和肿瘤组织的图像。接下来,它根据图像编码与仅对健康图像进行训练的自动编码器获得的重建编码之间的潜在空间距离对切片进行分类。我们通过对 HCP 和 BRATS-2015 数据集进行的一系列初步实验验证了我们的方法,结果表明所提出的方法能够将脑部 MRI 分为健康和不健康。