在设计速度的安全体系结构时,我们认为公共云是不安全的,无法存储个人未加密的数据。虽然我们遵循最佳实践来确保基础架构,但我们也认为它容易受到恶意入侵的影响。步调的安全模型依赖于椭圆曲线密码学。所有数据都在用户的设备上加密,并且从未通过网络未加密发送。为了实现这一目标,每个用户都有一个唯一的密钥对来加密和一个唯一的密钥对,用于签名数据。这些钥匙对是在创建帐户期间生成的,除所有者以外,其他任何人都不知道私钥。它可以确保没有人,甚至没有步调,可以读取用户的数据,除了最终可以决定与之共享的其他用户。,如果入侵者获得了对基础架构的恶意访问,它还可以防止妥协和数据泄漏。使用以下库使用NACL实现加密:
保护信息免于被盗或泄漏是自一开始以来的基本目标之一。将打印输出置于保险箱的时间已经结束了很长时间了,今天它已经接管了这项任务。通过使用严格的权限和各种加密技术,在大多数情况下,它做得很好。,但是今天的现代工作风格通过模拟编辑,有限的共享功能的需求以及最后但并非最不重要的一点来挑战这些解决方案,这是通过将信息外包给其他人(例如云提供商)的手中来挑战的。Microsoft Purview信息保护可以以一种更灵活的方式来实现比通过简单许可或加密解决方案更灵活的方式,因为授予的权利坚持使用了信息,并且两者都受到加密技术的保护。这允许某些服务仍然有效,例如索引,恶意软件保护等。Microsoft Purview信息保护将在第2.1章中介绍。
对Github的众多开源项目的安全问题报告的分析揭示了一个有关趋势的趋势:安全问题的扩散正在上升,而他们的决议进展缓慢,只有一小部分开发人员参与了这一过程(Bühlmann和Gha-Fari,2022年)。尽管密码学在安全性与数字世界无缝集成中的关键作用至关重要,但开发人员与现有的密码图库斗争。这些图书馆通常不支持共同的操作,缺乏足够的抽象,并且文档质量很差(Mindermann,Keck and Keck and Wagner,2018年; Hazhirpasand,Nierstrasz和Ghafari,2021a; Patnaik,Patnaik,Hallett和Rashid,2019年)。因此,API滥用可能是可能的,安全漏洞的主张也很可能。例如,在489个开源Java项目中对密码学的分析表明,有85%的API滥用(Hazhirpasand,Ghafari和Niersstrasz,2020年)。这些问题也存在于专有软件系统中。值得注意的是,研究人员已经确定了关键基础设施中的弱加密算法和遗产加密模式(Wetzels,Dos Santos和Ghafari,2023年)。Java加密体系结构(JCA)是最广泛采用的密码API,对称加密是软件系统中最重要的加密操作。在Stackoverflow上排名前100位的加密问题中的大多数以视图和分数排序是关于符号加密的。同样,它在使用JCA(Nadi,Krüger,Mezini和Bodden,2016年)的恒星排序的前100个GitHub项目中被64%采用。与先前的研究不同的是,在本文中,我们专门针对与JCA的对称加密,对其对开发人员的挑战提供了详细的看法。我们将定性和定量分析融合在一起,以发现开发人员的问题以及在
用于启用加密池或共享的包装密钥都保存在Oracle ZFS存储设备密钥库中。因此,密钥管理是关于在密钥库中管理密钥。使用Oracle密钥管理器密钥库时,Oracle Manager Manager中的键也需要管理由Oracle ZFS存储设备使用的密钥组。与这些策略相关的关键管理政策和行政角色应成为更广泛的组织密钥管理政策(KMP)和相关的密钥管理实践声明(KMP)的一部分。此类文件应包括适用于
摘要:在日常生活中,假冒伪劣产品特别是货币、药品、食品、机密文件等,会带来十分严重的后果,发展具有多层次安全性的防伪认证技术是克服这一挑战的有力手段。在各种防伪技术中,荧光防伪技术以其材料来源广泛、成本低廉、使用简便、隐蔽性好、响应机制简单等特点,被广泛用于打击造假者。螺吡喃因具有可逆的光致变色性质,在防伪和信息加密领域受到科学家的青睐。本文对目前可用的螺吡喃基荧光材料从设计到防伪应用进行了综述,旨在帮助科学家设计和开发具有高安全性、高性能、响应速度快、防伪等级高的荧光防伪材料。
在当今的数字环境中,尤其是在医疗保健行业中,保护隐私技术的重要性永远不会被夸大。升级的监管要求,例如美国和欧盟的一般数据保护法规(GDPR)等《健康保险可移植性法案》(HIPAA),需要严格的数据保护措施来保护患者信息。这些法规要求卫生保健实体实施强大的机制,以确保数据的机密性,完整性和隐私性。同时,由于需要扩展存储,计算能力和协作平台,因此可以看出,云计算可以集成到医疗基础架构中,这为隐私和安全带来了固有的风险。强制性调节合规性和云计算的固有风险的结合突出了对先进的隐私保护技术的需求。幸运的是,该领域的进步正在从理论结构发展为实用的现实世界。隐私技术的可行性和可扩展性的进步至关重要,为医疗保健行业提供了浏览数字隐私和安全性复杂景观所需的工具,同时利用云计算的好处。[11]
我们从单向函数构建量子键入加密。在我们的建筑中,公共钥匙是量子,但密文是经典的。在最近的一些作品中也提出了来自单向函数(或较弱的原始函数(例如伪和函数)状态)的量子公钥加密[Morimae-Yamakawa,Eprint:2022/1336; Coladangelo,Eprint:2023/282; Barooti-Grilo-Malavolta- Sattath-Vu-Walter,TCC 2023]。但是,它们有一个巨大的缺点:只有在量子公共钥匙可以传输到发件人(运行加密算法的人)而不会被对手篡改时,它们才是安全的,这似乎需要不令人满意的物理设置假设,例如安全量子通道。我们的构造摆脱了这样的缺点:即使我们仅假设未经身份验证的量子通道,它也保证了加密消息的保密。因此,加密是用对抗篡改的量子钥匙来完成的。我们的构建是第一个量子公共密钥加密,它实现了经典的公开加密的目标,即仅基于单向功能,建立对不安全渠道的安全沟通。此外,我们展示了一个通用编译器,以将对选择的明文攻击(CPA安全)升级到仅使用单向函数的选择Ciphertext攻击(CCA Security)的安全性。因此,我们仅基于单向功能获得CCA安全的量子公钥加密。
摘要。我们提供了新的结果,表明无法证明Elgamal加密是CCA1-Secure,这是密码学中长期存在的开放问题。我们的结果归功于基于非常广泛的基于元减少的不可能结果,这是与有效重新融合的证人的随机自我可重新相关关系。我们开发的技术首次允许为挑战者在安全游戏结束时输出新的挑战语句的非常弱的安全概念提供不可能的结果。这可以用来最终解决过去仍然难以捉摸的加密型定义。我们表明,我们的结果具有广泛的适用性,通过将几种已知的加密设置作为随机自我重新还原和可重新传递关系的实例。这些设置包括一般的半态PKE和大型认证的同型单向双向物种。结果,我们还为Paillier和Damg˚ard-jurik的IND-CCA1安全性获得了新的不可能结果,以及许多单人反转假设(例如一摩尔DLOG或一元RSA假设)。