●数据 - 终点通常包含有价值的数据,例如客户的个人身份信息(PII)●公司停机时间 - 不良行为者可以利用漏洞部署勒索软件并进行服务攻击的脆弱性,并进行服务攻击,关闭倒闭行动,关闭销售者的行动●监管范围可能会导致群体的攻击范围 - 违反了侵犯的侵犯,侵犯了侵犯的范围,侵犯了侵犯的范围,侵犯了违规的范围批评通过利用端点并横向移动,在公司网络中立足,播种种子为长期运动
超低功耗的高性能终端 AI 解决方案 WE-I Plus 处理器旨在适应多种 TinyML 神经网络模型,具有可编程 DSP,运行时钟频率高达 400MHz,内部 SRAM 为 2MB。WE-I Plus 支持 TensorFlow Lite 微控制器框架,能够运行推理,例如开源 Google 示例,包括“Hello World”、“Micro Speech”、“Person Detection”和“Magic Wand”,所有这些都可以在 Google 的 Github 上找到。它在计算机视觉应用中进行了全面优化,并且已证明使用“Person Detection”示例的功耗最低。WE-I Plus 与 Himax 的 VGA 传感器相结合,运行示例推理,功耗低至 2.5mW,模型推理时间少于 35 毫秒。 SparkFun 上适用于 TinyML 开发人员的终端 AI 开发板开发人员现在可以轻松访问 Himax 的领先技术,SparkFun 在线零售商店提供 WE-I Plus EVB,用于终端 AI 系统开发,最终实现改变生活的用例的创新。一体式 WE-I Plus EVB 包括 AI 处理器、HM0360 AoS VGA 摄像头、2 个麦克风和一个 3 轴加速度计,可执行视觉、语音和振动检测和识别。它内置 FTDI USB-SPI/I2C/UART 桥接器,用于闪存编程接口和消息/调试打印/元数据输出。它还具有两个 LED 来显示分类结果。此外,还提供带有 I2C 和 GPIO 接口的扩展头,以允许连接到外部传感器或设备。EVB、处理器和传感器的数据表可在 SparkFun 网站上下载。 Himax WE-I Plus EVB/Endpoint AI Development Board 在 SparkFun 的参考链接 https://www.SparkFun.com/products/17256
组织需要采用一流安全工具的多层方法,以全面保护其基础架构和数据,以快速有效地保护自己免受混合工作时代不断发展的威胁。Fortinet和CrowdStrike之间的战略合作伙伴关系结合了领先的端点和网络安全平台,为共同客户提供统一和合并的保护。这种集成有助于通过零信任自适应访问,AI驱动的威胁保护以及强大的威胁检测和响应来降低风险。通过集成平台,您的安全团队获得了整合的可见性,并增强了跨网络和端点的安全控制,从而消除了在多个接口之间切换的需求。因此,您可以迅速识别并应对遍历环境的难以捉摸的威胁,确保深入防御的强大而有弹性的安全姿势。
Evolution of Endpoint Detection and Response (EDR) in Cyber Security: A Comprehensive Review Harpreet Kaur *, Dharani Sanjaiy SL , Tirtharaj Paul , Rohit Kumar Thakur , K Vijay Kumar Reddy , Jay Mahato , Kaviti Naveen School of Computer Science and Engineering, Lovely Professional University, Phagwara-Punjab-144411, India * correspondence Author: harpreet.23521@lpu.co.in摘要 - 端点检测和响应(EDR)解决方案在现代网络安全策略中至关重要,使组织能够有效地检测,调查和响应网络威胁。对EDR技术的这种详细检查可追溯其从建立到当前状态的发展。它深入研究EDR的核心概念,强调了其在端点安全性和威胁识别中的重要性。该文件探讨了EDR进步背后的历史背景和驱动力,强调了机器学习,行为分析和增强EDR功能的威胁智能等技术进步。它还解决了EDR解决方案所面临的挑战,例如可伸缩性,绩效问题和逃避策略。通过案例研究和行业趋势分析,该论文展示了EDR在打击网络威胁及其整合到更广泛的网络安全框架中的功效。此外,它讨论了EDR技术的未来前景,考虑到人工智能,自动化和分散体系结构等新兴技术的影响。通过巩固学术研究,行业分析和实际应用的见解,本文对EDR在网络安全方面的演变进行了全面概述。
第1章加密概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.1业务环境。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.1.1威胁和安全挑战。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 1.1.2止境加密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 1.1.3透明的云层加密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 1.1.4 IBM光纤芯片端点安全。 div> 。 div> 。 div> 。 div> 。 div> 。 div>4 1.1.4 IBM光纤芯片端点安全。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.2加密概念和术语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2.1对称密钥加密。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2.2非对称键加密。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 1.2.3混合加密。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.4.4通信proclools:IBM Prolotary协议,SSL / TLS 1.2和密钥管理InterOocy InterTulopity prockulary < / div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 1.3加密挑战。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 div>
波士顿,2024 年 9 月 27 日——Ascidian Therapeutics 是一家通过重写 RNA 治疗人类疾病的生物技术公司,今天宣布它被评为 2024 年 Endpoints 11 家最有前途的生物技术公司之一。该奖项由 Endpoints News 编辑团队每年颁发给他们认为“最优秀、最聪明”的私营生物技术公司,评选依据包括出色的管理、创新的科学、雄心勃勃的药物开发计划以及大量的资源和支持。Ascidian Therapeutics 总裁兼首席执行官、Apple Tree Partners (ATP) 普通合伙人兼首席科学官 Michael Ehlers 医学博士、哲学博士表示:“我们很高兴被评为 Endpoints 11 公司之一。”“这一认可反映了 RNA 外显子编辑疗法的变革潜力,以及我们作为第一个全球监管机构在创纪录的时间内率先通过 FDA IND 流程推进 RNA 编辑疗法的成就。我为 Ascidian 的科学和进步感到无比自豪,这要归功于一支优秀的团队。这只是一个开始。感谢 Endpoints News 授予我这一荣誉,并祝贺今年的所有获奖者。”
2003年6月1日,在美国临床肿瘤学会(ASCO)年会上,有些人有权参加有关创新临床试验的会议。两名扬声器通过两种新的单克隆抗体与化学疗法结合使用了转移性结直肠癌(CRC)患者的生存延长数据。bevacizumab,靶向血管内皮生长因子(VEGF)A(Hurwitz H Proc Asco 2003,晚期破裂),延长的总生存期(OS)和西妥昔单抗,靶向表皮生长因子受体(EGFR; Cunningham d proc Asco 2003,摘要),长时间无进展生存率(PFS)。听众沉默地听着,无数的相机灰烬填满了整个房间,在谈判结束时,有着迷恋和喜悦。两次试验均在[1,2]后不久发布。在据报道,据报道患有HER2阳性乳腺癌的妇女中抗HER2/NEU抗体曲妥珠单抗的压倒性结果,人们可能会看到眼泪。1980年代和1990年代的铅数十年,在此期间,传统化疗对转移性肿瘤的局限性变得如此明显。采用新颖的靶向疗法,癌症治疗的进展开始了。 从那时起,针对癌症的药理学军械库一直在稳步增长,每年都会批准新药。 如今,很少有恶性疾病,例如慢性粒细胞性白血病或急性寄生虫细胞性白血病,可以在临床上降低至接近治愈的状态。 也就是说,对于晚期癌症患者的预后,仍然存在巨大的未满足医疗需求。采用新颖的靶向疗法,癌症治疗的进展开始了。从那时起,针对癌症的药理学军械库一直在稳步增长,每年都会批准新药。如今,很少有恶性疾病,例如慢性粒细胞性白血病或急性寄生虫细胞性白血病,可以在临床上降低至接近治愈的状态。也就是说,对于晚期癌症患者的预后,仍然存在巨大的未满足医疗需求。一些转移性实体瘤可以长时间成功治疗,患者的生活质量可容忍;通过正确的治疗干预措施,我们至少将某些癌症实体转化为慢性疾病的目的。
日本东京、新泽西普林斯顿、马萨诸塞州剑桥,2025 年 1 月 28 日 — 大宝制药株式会社、大宝肿瘤公司和 Cullinan Therapeutics 公司今天宣布了 REZILIENT1 试验,这是一项 1/2 期临床试验,研究了 zipalertinib(开发代码:CLN-081/TAS6417)单药治疗携带表皮生长因子受体 (EGFR) 外显子 20 插入突变的非小细胞肺癌 (NSCLC) 患者,这些患者曾接受过先前的治疗,并达到了其主要终点——总体有效率。安全性与之前的数据呈现基本一致。这些结果基于本研究的 2b 期部分。REZILIENT1 的全部结果将提交给即将召开的国际医学会议进行展示。在与美国食品药品管理局 (FDA) 进行讨论后,两家公司计划在 2025 年下半年提交美国监管部门批准。 关于 REZILIENT1 试验 REZILIENT1 是一项 1/2 期临床试验 (NCT04036682),旨在评估 zipalertinib 对接受过先前治疗的携带 EGFR 外显子 20 插入突变的 NSCLC 患者的疗效和安全性。此时获得的顶线结果基于该研究的 2b 期部分。REZILIENT1 的初步结果已发表在《临床肿瘤学杂志》® 上。1 REZILIENT:研究 Zipalertinib 在 EGFR 非小细胞肺癌肿瘤中的作用 关于 Zipalertinib Zipalertinib(开发代码:CLN-081/TAS6417)是一种口服小分子,旨在靶向 EGFR 中的激活突变。之所以选择该分子,是因为它能够抑制具有外显子 20 插入突变的 EGFR 变体,同时保留野生型 EGFR。Zipalertinib 被设计为下一代不可逆 EGFR 抑制剂,用于治疗基因定义的非小细胞肺癌患者亚组。Zipalertinib 已获得 FDA 的突破性治疗指定。Zipalertinib 由 Taiho Oncology, Inc.、其母公司 Taiho Pharmaceutical Co., Ltd. 以及美国的 Cullinan Therapeutics, Inc. 合作开发。关于 EGFR 外显子 20 插入突变 NSCLC 是一种常见的肺癌形式,所有病例中高达 4% 患有 EGFR
参考文献:1. Luskin, Marlise R. 等人。“针对微小残留病灶:治愈途径?”《自然评论癌症》18.4(2018):255-263。2. Kostopoulos, Ioannis V. 等人。“多发性骨髓瘤中的微小残留病灶:当前形势和免疫治疗方法的未来应用。”肿瘤学前沿 10 (2020): 860。 3. https://clinicaltrials.gov/ct2/show/NCT01702831?term=NCT01702831&draw=2&rank=1 4. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/hematologic-malignancies-regulatory-considerations-use-minimal-residual-disease-development-drug-and 5. https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure 6. https://www.ema.europa.eu/en/guideline-use-minimal-residual-disease-clinical-endpoint-multiple-myeloma-studies 7. https://www.myeloma.org/blog/key-trends-myeloma-care-2021 8. IMWG。国际骨髓瘤工作组 (IMWG) 多发性骨髓瘤统一疗效标准。2010 年。 9. IMWG。多发性骨髓瘤疗效标准。2016 年