充满活力的需求和对捕食者的恐惧是塑造动物行为的主要因素,并且两者都可能是运动决策的驱动因素,最终决定了野生动植物的空间生态。对物理景观施加的运动对运动的限制仅与避免风险施加的局势分开考虑,这限制了我们对短期运动决策的理解,以影响长期的空间使用。在这里,我们将物理地形和捕食风险的成本整合到共同的货币,能源中,然后量化其对生活在人体统治景观中的大型食肉动物的短期运动和长期空间生态的影响。使用来自领pumas(puma concolor)的高分辨率GPS和加速度数据,我们计算了累积的物理地形和风险的短期(即5分钟)的能量成本(即5分钟)的成本(对我们的研究人群的主要酸味和恐惧)。物理和风险景观都影响了PUMA短期运动成本,风险通过诱导高能量但低效率的运动行为而产生相对较大的影响。短期运动成本的累积影响导致每日旅行距离和总房屋范围区域减少29%至68%。对于雄性pumas,长期使用空间的模式主要是由人类引起的风险的能量成本驱动的。这项工作表明,与物理地形一起,捕食风险在塑造动物的“能量景观”中起着主要作用,并表明对人类的恐惧可能是影响全球野生动植物运动的主要因素。
截至2018年,在31个国家 /地区有451个核反应堆,目前正在建设另外59个反应堆。 所有这些核电站都有可以在周围地下水中测量的慢性trion释放。 在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。 每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。 虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。 即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。 因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。 新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。截至2018年,在31个国家 /地区有451个核反应堆,目前正在建设另外59个反应堆。所有这些核电站都有可以在周围地下水中测量的慢性trion释放。在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。 每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。 虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。 即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。 因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。 新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。在美国,已经观察到20 NCI/L至0.1 N CI/L之间的浓度。每天每天饮用4.4 L的剂量4.4升1 n ci/l一年,相当于每年从天然背景辐射中收到的年剂量的30%。虽然科学界知道,将trip的长期释放到地下水无关,但公众对这个问题更为敏感。即使在地下水活性低于EPA最大污染物水平为4 MREM的地点,土地所有者也成功起诉核电站。因此,对于任何核电站的任何操作员来说,向地下水的慢性trip释放仍然是一个迫在眉睫的问题。新建造的裂变或融合厂需要强大的策略来减轻将tri释放到环境中,以减轻公众的反对并限制法律责任。
摘要:近年来,作为低成本,导电层的半导体聚合物已受到越来越多的关注。为了显示合理的电导率,必须掺杂半导体聚合物,该过程需要氧化或还原共轭主链和结构重排,以便将电荷平衡柜台容纳到聚合物网络中。在这里,我们旨在了解这种结构重排如何有助于掺杂的能量。我们利用了一个事实,即摩擦对齐的聚(3-己基噻吩-2,5-二苯基)(p3HT)膜包含两个多晶型物,一种具有晶体结构,其密度低于在未对齐的膜中观察到的结构,而另一个具有更紧密的,更紧密的浓度,浓度更紧密的晶状体结构。分别相对于底物,这两种结构分别是面对面和边缘的,因此它们的衍射在Q空间中很好地分开,因此可以分别监测每个种群的掺杂诱导的结构变化。当电影掺杂2,3,5,6- tetrafluoro-7,7,8,8-四甲苯喹啉甲烷烷(F 4 TCNQ)时,比浓度更容易诱导的结构变化,而不是浓度更容易诱导的结构变化。这一发现表明,在掺杂过程中,聚合物晶体结构的重新排列是一个重要的能量术语,并且可以通过设计新聚合物来促进半导体聚合物的掺杂,在该聚合物中,可以在结构减少的聚合物及时中容纳掺杂剂。s
摘要:我们利用 2019 年 5 月至 6 月 30 天内具有真实大气强迫和背景环流的全球 1/25 8 混合坐标海洋模型 (HYCOM) 模拟研究了风致近惯性波 (NIW) 的产生、传播和消散。计算了总场的时间平均近惯性风能输入和深度积分能量平衡项,并将场分解为垂直模式以区分 NIW 能量的辐射和(局部)耗散分量。只有 30.3% 的近惯性风输入投射到前五个模式上,而前五个模式中的 NIW 能量之和占总 NIW 能量的 58%。几乎所有深度积分的 NIW 水平能量通量都投射到前五种模式上。NIW 模式的耗散和衰减距离的全球分布证实,低纬度是高纬度产生的 NIW 能量的汇聚点。发现 NIW 能量的局部耗散部分 q 局部 在整个全球海洋中是均匀的,全球平均值为 0.79。水平 NIW 通量从具有气旋涡度的区域发散,并汇聚在具有反气旋涡度的区域;也就是说,反气旋涡流是 NIW 能量通量的汇聚点 (特别是对于较高模式而言)。大多数未投射到模式上的残余能量在反气旋涡流中向下传播。全球近惯性风能输入量在30天内为0.21TW,其中只有19%传输到500米深度以下。
视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。
原子层沉积 (ALD) 已迅速成为半导体行业的重要工具,因为它可以在低温下提供高度保形、可精确调节的涂层,厚度控制在亚纳米级。因此,ALD 是一种将电介质集成到先进光电子器件中的强大方法,并且对于实现新兴的非平面电子设备至关重要。[1] 特别是,可以通过 ALD 在结构化表面上保形生长的非晶态氧化铝 (AlO x ) 广泛用于半导体技术的电介质和化学钝化、[2] 跨硅 (Si) 太阳能电池界面的载流子选择性电荷转移、[3] 非平面场效应晶体管中的栅极电介质、[4] 以及扩散屏障和保护涂层。[5] 当用作 Si 场效应钝化的表面涂层时,ALD AlO x 会引入
结果:与 HVs 相比,AS 患者(AS-T2D 和 AS-noT2D 合并)在 AVR 前表现出 PCr/ATP(平均值 [95% CI];HVs,2.15 [1.89, 2.34];AS,1.66 [1.56, 1.75];P <0.0001)和血管舒张剂应激 MBF(HVs,2.11 mL min g [1.89, 2.34];AS,1.54 mL min g [1.41, 1.66];P <0.0001)受损。 AVR 之前,在 AS 组中,与 AS-noT2D 患者相比,AS-T2D 患者的 PCr/ATP(AS-noT2D,1.74 [1.62, 1.86];AS-T2D,1.44 [1.32, 1.56];P =0.002)和血管舒张剂应激 MBF(AS-noT2D,1.67 mL min g [1.5, 1.84];AS-T2D,1.25 mL min g [1.22, 1.38];P =0.001)较差。在 AVR 之前,AS-T2D 患者的 PCr/ATP(AS-T2D,1.44 [1.30, 1.60];T2D 对照组,1.66 [1.56, 1.75];P =0.04)和血管扩张剂应激 MBF(AS-T2D,1.25 mL min g [1.10, 1.41];T2D 对照组,1.54 mL min g [1.41, 1.66];P =0.001)也比基线时的 T2D 对照组差。AVR 后,AS-noT2D 患者的 PCr/ATP 恢复正常,而 AS-T2D 患者没有改善(AS-noT2D,2.11 [1.79, 2.43];AS-T2D,1.30 [1.07, 1.53];P =0.0006)。接受 AVR 治疗后,两组 AS 的血管扩张剂应激 MBF 均有所改善,但 AS-T2D 患者的 MBF 仍然较低(AS-noT2D,1.80 mL min g [1.59, 2.0];AS-T2D,1.48 mL min g [1.29, 1.66];P =0.03)。PCr/ATP 不再有差异(AS-T2D,1.44
德克萨斯州休斯顿 — 5E Advanced Materials, Inc. (Nasdaq: FEAM) (ASX: 5EA)(“5E”或“公司”)是一家硼和锂公司,其 5E Boron Americas (Fort Cady) 综合设施被美国政府指定为关键基础设施,已与 Estes Energetics 签署了一份不具约束力的意向书(“LOI”),合作生产用于固体火箭发动机的硼先进材料,以支持美国航天和军事工业。根据意向书的条款,5E 和 Estes 将努力达成一项具有约束力的协议,以供应用于制造固体火箭发动机点火器的硼先进材料。5E 和 Estes Energetics 还将考虑进行更广泛的合作,重点是合作生产设施、业务开发活动和共享技术知识,以开发针对太空和军事应用的硼先进材料和专有知识产权。根据意向书的条款,Estes Energetics 使用的硼先进材料与美国政府最近的举措和计划相一致,因为它们对军事弹药和民用应用至关重要,而且由于海外供应集中和美国对进口的依赖,存在供应风险。Estes Energetics 是一家国防和工业公司,为政府和商业客户研究、设计、制造、测试和集成固体推进剂火箭发动机、能量学、关键化学品和相关技术。它将实用推进解决方案开发与先进的航空航天研究和开发结合在一个团队下。Estes Energetics 在科罗拉多州彭罗斯和路易斯安那州明登设有工程、制造和测试设施。Estes Energetics 是从 Estes Industries 剥离出来的,后者是模型火箭领域的世界领导者,拥有 60 多年的固体推进剂火箭发动机生产经验。5E 首席商务官 Dino Gnanamgari 博士在评论与 Estes Energetics 的意向书时指出:
Chemring Energetics UK的气体发生器范围旨在用于轻质模块化系统,高风险消防源需要自动保护。CEUK能够提供定制设计的实心气体发生器,非常适合快速排出粉末或与需要受控压力输出的液体系统一起使用。气体发生器的基本目的是在所需压力下的气体演化,以在短时间内撤离各种尺寸的火灾抑制缸。Ardeer的Chemring Energetics UK网站已经生产了100多年的能量设备,并以其在该行业中的专业知识而闻名。优势更大的控制压力只有在系统功能并进行控制以提供应用最有效的压力/时间概况时产生压力。体重节省没有燃气瓶,没有压力容器,没有压力调节器空间节省的管道减少或没有维护,没有加压气体来检查增强的性能低操作压力;均匀输出简单安装不安装电源水或电源所需的高度可靠从航空航天技术开发的可靠,没有加压缸的缺乏会减少替代设计中明显的危险