摘要:本文试图在分析fMRI数据中进步,以检测阿尔茨海默氏病的发作并确定疾病进展中的阶段。我们采用网络神经科学的方法来表示范围内fMRI数据阵列之间的相关性,并引入了用于网络构建和分析的新技术。在网络构建中,我们在建立节点之间建立大胆的时间序列相关性方面有所不同,从而产生拓扑和其他网络特征的变化。用于网络分析,我们采用开发的方法来建模热系统中虚拟粒子的统计集合。微型典型集合和规范合奏类似于两个不同的fMRI网络表示。在前一种情况下,每个网络中的边数差异为零,而在后一种情况下,网络集的边数差异。集合方法通过考虑与程度配置和网络熵密切相关的潜在微观特征来描述网络的宏观特性。当应用于阿尔茨海默氏症患者和对照组中的fMRI数据中时,我们的方法表明,在识别病理学变化的大脑区域以及揭示此类变化的动态方面,敏感性水平足以临床目的。
如果没有DOE Wind Energy Technologies Office的支持,将不可能创建风力整合国家数据集(WIND)工具包长期集合数据集(WTK-LED)。多年来,团队特别感谢帕特里克·吉尔曼(Patrick Gilman)和布雷特·巴克(Bret Barker)的支持。Various teams and researchers across the National Renewable Energy Laboratory (NREL) contributed to the WTK-LED by either giving input in the design stage or using the data and thereby shaping the final version of the WTK-LED: Eric Lantz, Greg Brinkman, Trieu Mai, Cong Feng, Ryan King, Brandon Benton, Dmitry Duplyakin, and Zagi Zisman.,我们还感谢太平洋西北国家实验室的电网团队审查了网格整合研究的数据。我们感谢Wind Resource数据库的开发团队提供一个简单的数据查看和下载平台:Rachel Barton,Paul Edwards,Jason Ferrier,Nick Gilroy,Nick Gilroy,Amber Mohammad,Reid Olson和Paul Susmarski。
图1。将预测作为土壤健康数据立方体的一部分(AI4SOILHealth项目)的一部分。这是作为自动化工作流的实现的,可以随着新的旧土壤数据的协调并添加到培训池中,可以更新和改进预测。Abbreviations: AW3D30 — ALOS World 3D 30 m Digital Surface Model ( Japan Aerospace Exploration Agency , 2021 ), GLO30 — Copernicus GLO-30 Digital Surface Model ( European Space Agency , 2024 ), NIR — Near Infrared, SWIR — Short-wave infrared, NDVI — Landsat Normalized Difference Vegetation Index, NDTI — Normalized Difference Tillage Index, MODIS — The NASA的中等分辨率成像光谱仪,NUTS3 - 基于螺母(统计数据的领土单位的命名)的欧盟小区域,分类,LST- LST - 土地表面温度,MODIS。
在亚季节时间尺度上产生关键气候变量(例如温度和沉淀)的高质量预测长期以来一直是操作预测的差距。本研究探讨了机器学习(ML)模型作为次生预测的后处理工具。滞后的数值集合预测(即成员具有不同初始化日期的合奏)和观察数据,包括相对湿度,海平面压力和地理位置高度,以预测每月平均降水量和两周的温度,以预测每月平均降水量和两周的温度。用于回归,分位数回归和二齿分类任务,我们考虑使用线性模型,随机森林,卷积神经网络和堆叠模型(基于单个ML模型的预测,一种多模型方法)。与以前单独使用集合的ML方法不同,我们利用嵌入整体预测中的信息来提高预测准确性。此外,我们研究了极端事件预测,这些预测对于计划和缓解工作至关重要。将合奏成员视为空间前铸件的集合,我们探讨了使用空间信息的不同方法。可以通过模型堆叠来减轻不同方法之间的权衡。我们提出的模型优于标准基准,例如气候预测和整体手段。此外,我们研究特征的重要性,使用完整的合奏或仅合奏均值之间的权衡以及对空间可变性的不同会计模式。
摘要 - 检测恶意攻击的网络入侵检测系统(NID)继续面临挑战。NID通常是离线开发的,而它们面临自动生成的端口扫描尝试,从而导致了从对抗性适应到NIDS响应的显着延迟。为了应对这些挑战,我们使用专注于Internet协议地址和目标端口的超图来捕获端口扫描攻击的不断发展的模式。然后使用派生的基于超图的指标集来训练集合机学习(ML)基于NID的NID,以高精度,精确和召回表演以高精度,精确性和召回表演以监视和检测端口扫描活动,其他类型的攻击以及对抗性入侵。通过(1)入侵示例,(2)NIDS更新规则,(3)攻击阈值选择以触发NIDS RETRAINGE RECESTS的组合,以及(4)未经事先了解网络流量本质的生产环境。40个场景是自动生成的,以评估包括三个基于树的模型的ML集成NID。使用CIC-IDS2017数据集进行了扩展和评估所得的ML集合NIDS。结果表明,在更新的nids规则的模型设置下(特别是在相同的NIDS重新培训请求上重新训练并更新所有三个模型),在整个仿真过程中,提出的ML集合NIDS明智地进化了,并获得了近100%的检测性能,并获得了近100%的检测性能。
如今,许多可怕的疾病是由蚊子以及其他类型的感染引起的。蚊子也被称为无声喂食器。由于这种能力,蚊子会利用增加其传播疾病的能力。许多威胁生命的疾病,例如疟疾,登革热,寨卡病毒,黄热病和基孔肯雅亚是由这些蚊子引起的。这些疾病是由病毒,寄生虫和细菌病原体通过各种载体(例如埃及伊蚊)和库勒克斯(Culex)引起的。由于全球案件的迅速增加,因此有必要部署智能机器自动化模型来减少感染的传播。本研究中使用的方法检测到负责传播这些疾病的不同类型的蚊子。控制感染传播的关键是根据其翅膀的拍子检测蚊子的类型。本研究中使用了与不同来源收集的与蚊子翼节相关的声音录音。这些录音是根据蚊子物种通过最大合并和卷积模型来划分的。整个工作在三个部分下进行了框架:识别记录的声音音频文件以获取MEL频谱图像,使用合并和卷积方法提取特征,并使用合奏方法使用分类器,例如随机森林,支持向量机(SVM)和决策树来识别蚊子类型。频率波用于在预处理阶段将音频记录转换为频谱图。频谱图滤波器用于消除频谱图像中的噪声。使用合并和卷积方法获得矢量值。然后将本工作中使用的分类器中的值馈入集合方法,以根据其机翼节拍识别蚊子类型。基于最终结果和观察结果,SVM分类器的精度最高,与其他分类器相比,伊迪斯型白emopictus型为95.05%。
摘要:气候系统的振荡模式是其最可预测的特征之一,尤其是在季节内尺度上。这些振荡可以通过数据驱动的方法很好地预测,通常比动态模型更好。但是,由于振荡仅代表了总方差的一部分,因此以前尚不清楚将振荡预测与整体系统的动态预测相结合的一种方法。我们引入了集合振荡校正(ENOC),这是一种校正动力学模型集合预测中振荡模式的通用方法。我们计算合奏平均值或集合概率分布,只有最佳的集合成员,这是由它们与振荡模式的数据驱动预测差异所确定的。我们还提出了一种使用集合数据同化的替代方法,将振荡预测与系统的动态预测集合(ENOC-DA)结合在一起。使用一种称为多通道构思频谱分析(M-SSA)的时间序列分析方法提取振荡模式,并使用模拟方法进行了预测。我们使用具有显着振荡组件的混沌玩具模型测试这两种方法,并表明与未校正的集合相比,它们可稳健地减少误差。我们讨论了这种方法的应用,以改善季风的预测以及气候系统的其他部分。我们还讨论了该方法可能扩展到其他数据驱动的预测,包括机器学习。
摘要 - 这项研究采用一系列机器学习模型来预测摩洛哥的原油价格,包括线性回归,随机森林,支持向量回归(SVR),XGBoost,Arima,先知,先知和梯度提升。在其中,SVR以1.414的RMSE证明了最高精度。此外,评估了Arima和先知模型,分别产生2.46和1.41的RMS。合并模型结合了所有单个模型的预测,其RMSE为2.144,表明性能稳健。2024-2027的预测显示,原油价格的趋势上涨,SVR模型预测2027年的MAD 21.91,而整体模型预测14.47 MAD。这些发现强调了集合学习和先进的机器学习技术在产生可靠的经济预测中的有效性,为能源领域的利益相关者提供了宝贵的见解。
MRI(磁共振成像)的分类过程经常用于对垂体、神经胶质瘤、脑膜瘤和非肿瘤等疾病进行医学诊断。因此,确定 MRI 的类型及其数量是揭示大脑健康状况的重要且有价值的测量。为了对大脑分析进行分割和分类,实验室人员通过屏幕进行手动检查;这需要大量的劳动力和时间。另一方面,专家使用的设备对于每个医生或机构来说并不实用或便宜。近年来,已经开发了各种用于分割和分类的计算算法,并改进了结果以解决这个问题。人工神经网络(ANN)在这方面具有分类的能力和前景。本文的目的是创建并实施一个系统,用于对不同类型的脑肿瘤样本 MRI 图像进行分类。因此,本文集中研究了使用各种机器学习算法进行分割、特征提取、分类器构建和分类为四类的任务。作者使用基于三种模型的迁移学习算法的 VGG-16、ResNet-50 和 AlexNet 模型作为集成模型对图像进行分类。因此,MRI 脑肿瘤分割更加精确,因为现在每个空间特征点都可以参考所有其他上下文数据。具体来说,我们的模型在官方深度学习挑战赛中优于所有其他已发布的现代集成模型,无需任何后处理。集成模型的准确率为 99.16%,灵敏度为 98.47%,特异性为 98.57%,精确率为 98.74%,召回率为 98.49%,F 1 分数为 98.18%。这些结果明显超过了朴素贝叶斯、决策树分类器、随机森林和 DNN 模型等其他方法的准确率。