1加利福尼亚大学旧金山分校的生物工程和治疗科学系,加利福尼亚州旧金山,美国2结构生物学计划,CUNY高级科学研究中心,纽约,纽约,纽约,10031 3博士。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。 120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。Phenix,Refmac,Buster)。这些QFIT中的这些算法改进是由跨蛋白质范围的上级和几何指标证实的。重要的是,与更复杂的多拷贝集合模型不同,可以在大多数主要的模型构建软件中手动修改QFIT生产的多构形式模型(例如,coot)和拟合度可以通过使用标准管道来进一步改善(例如通过减少创建多配量模型的障碍,QFIT可以促进有关大分子构象动力学和功能之间关系的新假设的发展。
糖尿病是一种慢性代谢紊乱,其特征是血糖升高,对健康造成重大风险,例如心血管疾病以及神经、肾脏和眼睛损伤。有效管理血糖对于糖尿病患者来说至关重要,可以减轻这些风险。本研究介绍了 Glu-Ensemble,这是一种深度学习框架,旨在为 2 型糖尿病患者提供精确的血糖预测。与其他预测模型不同,Glu-Ensemble 解决了与小样本量、数据质量问题、对严格统计假设的依赖以及模型复杂性相关的挑战。它通过利用更大的数据集来提高预测准确性和模型通用性,并减少许多预测模型固有的偏差。与患者特定模型相比,该框架的统一方法消除了初始校准时间的需要,有助于立即为新患者预测血糖。所得结果表明,Glu-Ensemble 在准确性方面超越了传统方法,以均方根误差、平均绝对误差和误差网格分析来衡量。 Glu-Ensemble 框架成为预测 2 型糖尿病患者血糖水平的有前途的工具,值得在临床环境中进一步研究其实际应用。
根据作者克劳斯·凯斯特尔(Claus Kestel),马文·盖塞尔哈特(Marvin Geiselhart),卢卡斯·约翰逊(Lucas Johannsen),斯蒂芬·恩·布林克(Stephan Ten Brink)和诺伯特·韦恩(Norbert Wehn)的作者克劳斯·凯斯特尔(Claus Kestel)和诺伯特·韦恩(Norbert Wehn),的题为“ 6G urllc的自动化集合代码解码器”,这是即将到来的6G标准标准的urllc sereario。 实现接近ML的性能是具有挑战性的,尤其是对于短块长度。 极性代码是此应用程序的有前途的候选人。 上述论文讨论了连续的取消列表(SCL)解码算法,该算法提供了良好的误差校正性能,但在高计算解码的复杂性下。 本文引入了自动形态集合解码(AED)方法,该方法在并行执行了几种低复杂性解码。 本文介绍了AED架构,并将其与最先进的SCL解码器进行了比较。 因此,鉴于Kestel等人的理论和实验证明,我们在这里概述了由TLB GmbH管理的PCT应用保护的这项技术发明的位置和背景。的题为“ 6G urllc的自动化集合代码解码器”,这是即将到来的6G标准标准的urllc sereario。实现接近ML的性能是具有挑战性的,尤其是对于短块长度。极性代码是此应用程序的有前途的候选人。上述论文讨论了连续的取消列表(SCL)解码算法,该算法提供了良好的误差校正性能,但在高计算解码的复杂性下。本文引入了自动形态集合解码(AED)方法,该方法在并行执行了几种低复杂性解码。本文介绍了AED架构,并将其与最先进的SCL解码器进行了比较。因此,鉴于Kestel等人的理论和实验证明,我们在这里概述了由TLB GmbH管理的PCT应用保护的这项技术发明的位置和背景。
摘要:映射有助于功能的蛋白质构象的整体,可以用小分子药物来靶向,这仍然是一个重大的挑战。在这里,我们探讨了变异自动编码器的使用来减少蛋白质结构合奏生成问题中维度的挑战。我们将高维蛋白质结构数据转换为连续的,低维的表示,在以结构质量度量为导向的空间中进行搜索,然后使用由采样的结构信息引导的Rosettafold来生成3D结构。我们使用这种方法为癌症相关的蛋白质K-RAS生成合奏,在可用的K-Ras晶体结构的子集上训练VAE和MD模拟快照,并评估接近与训练中与晶体结构接近的取样程度。我们发现,我们的潜在空间采样程序迅速生成具有高结构质量的合奏,并且能够在固定晶体结构的1Å内进行采样,其一致性高于MD模拟或Alphafold2预测。采样结构充分概括了固定的K-RAS结构中的隐性口袋,以允许小分子对接。
➢可以根据患者的写作技巧获得有关阿尔茨海默氏病的信息。/根据患者写作技巧的恶化,可以获得有关阿尔茨海默氏病的信息。➢在这项研究中,将梯度提升机,分类提升,自适应机学习分类算法与硬投票的分类器结合使用,并通过手写数据集对公开可用的阿尔茨海默氏症进行培训和测试。/在这项研究中,梯度提升机,分类增强和适应性提升机学习分类算法与硬投票分类器结合使用,并在公共诊断阿尔茨海默氏症中与手写数据集进行了培训。aïm:这项研究的目的是通过结合基于机器学习的分类器来快速和高度敏感性地检测阿尔茨海默氏病。/这项研究的目的是将基于机器学习的分类器结合在一起,并通过手写快速,高精度地检测阿尔茨海默氏病。
全球气候模型(GCMS)模拟了全球范围内的低分辨率投影。GCM的本地分辨率通常对于社会级别的决策而言太低。为了增强空间分辨率,通常将降尺度应用于GCM输出。尤其是统计缩减技术,是一种具有成本效益的方法。与基于物理的动力学缩放相比,它们所需的计算时间要少得多。近年来,与传统统计方法相比,统计降尺度的深度学习越来越重要,证明错误率明显较低。但是,基于回归的深度学习技术的缺点是它们过度适合平均样本强度的趋势。极值通常被低估。问题上,极端事件具有最大的社会影响。我们提出了分位数回归征(QRE),这是一种受增强方法启发的创新深度学习al-gorithm。它的主要目标是通过训练分区数据集上的独立模型来避免拟合样品平均值和特殊值之间的权衡。我们的QRE对冗余模型具有鲁棒性,并且不容易受到爆炸性集成权重的影响,从而确保了可靠的训练过程。QRE达到了较低的均方误差(MSE)。尤其是,对于新西兰的高强度沉淀事件,我们的算法误差较低,突出了能够准确代表极端事件的能力。
本文调查了利用以前任务的现有所谓模型以使用有限的培训数据来解决相关目标任务的问题。解决此问题的现有方法通常需要访问现有解决方案模型以及其培训数据的内部参数,这在许多实际设置中是不可能的。为了重新确定此要求,我们从黑框重新插入的新角度解决了这个问题,从而增加了目标输入并利用了现有的黑盒API将其相应的输出传达到功能集合中。我们假设可以学习这种功能集合,以将相关的黑框知识合并到目标数据的特征表示中,这将构成其稀缺性。通过我们提出的Black-box集合的报告确认了这一假设,以求解从各种基准数据集中得出的多个几次学习任务。所有报告的结果始终显示出,确实可以重复使用并有效地使用以前任务的异质黑盒解决方案,以解决合理相关的目标任务,而无需访问大型培训数据集。这是使新的可能性进一步补充传输或元学习中现有技术的第一步。
合奏修剪结合了并行制作预测产生的个体学习者的子集是整体学习中的重要话题。过去几十年来开发了许多修剪算法,这些算法的重点是学习者对样本的外部行为,这可能会导致过度拟合。在本文中,我们猜测合奏的概括性能不仅与样本上的外部行为有关,而且还取决于分裂学习者的内部结构。我们提出了基于kolmogorov复杂性和最小描述长度(MDL)原理的一般MEPSI方法,该原理制定了综合修剪任务,作为构成两种目标的优化问题,这些问题包括个人学习者之间的经验误差和结构信息。我们还提供了对决策树的MEPSI的具体实现。理论结果为一般的MEPSI方法和基于树的实现提供了概括。在多个现实世界数据集上进行的合规实验证明了我们提出的方法的有效性。
。cc-by-nc 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2024年3月11日。 https://doi.org/10.1101/2023.11.23.23298966 doi:medrxiv preprint
最近,Android用户的数量已大大增加,这使Android成为攻击者发起恶意活动的目标。恶意软件或恶意代码通常嵌入到Android应用中,以访问用户的设备并检索个人数据。研究人员探索了各种方法来减轻Android恶意软件的传播。此外,Android恶意软件数据集具有巨大的尺寸,并具有数百个功能。选择适当的特征选择方法是产生可靠检测模型的挑战之一。本文提出了一种使用增益比选择和一个集成机器学习算法来检测Android恶意软件并将其分为五个类别的方法。通过增益比计算方法根据其重要性值降低的特征。然后,被认为必要的功能包含在结合许多模型的分类过程中。使用Cicmaldroid2020(加拿大网络安全研究所Android 2020)的实验数据集表明,所提出的方法可以改善检测性能。增益比的特征选择提高了几种机器学习分类算法的检测准确性,幼稚的贝叶斯的2.59%,最近的邻居和2.29%的支持向量机。因此,随机森林,额外树木和最近邻居的结合机器学习模型取得了最高的性能,精度为94.57%,精度分数为94.71%。