可再生能源与经典发电系统的结合是可持续能源产生的未来。通过数值模拟研究了将太阳能整合到布雷顿周期发电厂中的可行性和性能。布雷顿循环的代表代表了这种整合的好机会,布雷顿周期的特征是高效和适当使用多种热源。目前的工作着重于根据布雷顿周期的方案将太阳能纳入发电厂的可能性和效率,以提高效率并根据数值建模降低成本。最新的技术涉及在布雷顿周期中使用CH 4气体的可行性,该周期中有燃气轮机燃烧室和气吹风机。主要观察结果包括涡轮机的效率提高了32%,事实是,多年来,使用太阳能电池板,多年来,一般费用也从没有太阳能电池板的情况下也从没有太阳能电池板的每公里 /小时售价5.2美元降低到每兆瓦的4.3美元。关于排气温度,结果指出,由于使用太阳能电池板,温度上升了29%。提出的结果证明了可再生太阳能和常规发电系统的综合使用的潜力和好处,以促进更有效的能源的形成。
摘要 本文使用牛顿-欧拉法建立了配备机械臂的六旋翼飞行器的动力学模型,并研究了其稳定性。为了模拟干扰,使用了简化的摆锤法。这种六旋翼飞行器配置以前从未在科学论文中涉及过。所得模型是一个非线性、耦合和欠驱动的动力学模型,其中包括由于六旋翼飞行器配备机械臂而产生的空气动力学效应和干扰。本文的目的是全面研究使用简化摆锤法确定六旋翼飞行器的惯性矩,同时考虑到质量分布和重心变化的影响,这是六旋翼飞行器在空中运动期间机械手连续运动的结果。实验测试是使用 Solid Works 应用程序进行的,并使用 LabVIEW 进行评估,以便全面了解插入到动力学模型中的干扰。整个飞行器模型由四个经典的 PID 控制器驱动,用于控制飞行器的姿态和空间中所需轨迹的高度。这些控制器用于很好地理解如何评估和验证模型,使其成为抗干扰模型,此外,它们还易于设计和快速响应,但它们需要开发才能获得最佳结果。将来,将定义精确的轨迹,
摘要:本文介绍了配备两个升降副翼和一个电动机的小型无人机的飞行故障检测和基本重构。考虑的故障场景是直线平飞期间一个控制面卡在给定位置。故障检测采用多模型自适应估计解决,考虑无故障和故障(左或右表面卡住)系统模型。基本重构是为了稳定飞行免受大气干扰,在横向通道中应用剩余表面,并采用总能量控制概念将空速和高度保持在纵向通道中可接受的限度之间。在软件在环仿真中,故障检测和重构取得了令人满意的结果。
8 Rachel Hall,“智库警告,英国公共服务因短期政策而陷入‘厄运循环’”《卫报》(2023 年 10 月 30 日)https:// www.theguardian.com/society/2023/oct/30/uk-public-services-policy-institute-for-government-report 于 2024 年 6 月 24 日访问。9 Michael Goodier、Carmen Aguilar García 和 Richard Partington,“十年紧缩政策如何挤压英格兰的议会预算”《卫报》(2024 年 1 月 29 日)https://www.theguardian.com/uk-news/2024/jan/29/how-a-decade-of-austerity-has-squeezed-council-budgets-in-england 于 2024 年 6 月 24 日访问。10 Eugenio Vaccari 和Yseult Marique,‘五分之一的议会面临‘破产’风险——地方当局耗尽权力后会发生什么
$evwudfw²6xSSO\ fkdlqv dqg pdqxidfwxulqj v \ vwhpv urexvwqhvv dqg uhvlolhqfh uhvlolhqfh uhvlolhqfh duh iru pdq \ \ xfwlrq SurfHvVhv 7zr grpdlqv duh fuxfldo wr dfklhyh vxfk sxusrvh sxusrvh wkh iruphu lv idvw dqg frpsuhkhqvlyh LRQ PDNLQJ 7KH ODWHU UHIHUV WR WKH LQWHUYHQWLRQ E \ rshudwruv deoh wr ehwwhu lghqwli \ sugrohxwhr \ sugrohxwhwhwhwhwh rshudwhwh rshudwlrqv dlphg dlphg dlphg dw il dw il s lw u ehwwwh u ehwq v v v v v v v v v v u suhvhqwv dq lqwhjudwhg dssurdfk hqfrpsdvvlqj d fskurdwgwg,$ vrdvhwg,dfk wr prqlwru dqg dqg ghwhfw ghwhfw fulwlfdo fulwxdwlrqv ixdwlrqv ixoxOO p vxssruwlqj rshudwruv lq wkh wilhodwlqlqlqlql lqlwh fwlrqdo frqwlqxrxv frqqhfwlrq $ fwlylwlhv lq lq lq wkh frqh frqh frqh frqh frqh frqh frq frq frq frq frq frq gxv dwphwqlwhwwwwwwwwwww qwlqj wkh sursrvhg dssurdfk dqg ghprqvwudwlqj lq dq dxwrpdwhg surgxfwlrq olq olq olq olq olq olqh wkh hiihfwlyhqhvv ri wkh dssurdfk h lqglfdwruv ghprqvwudwhv wkh vrxqgqhvv ri wkh sursrvhg vroxwlrq dqg lpsohphqwdwlrq phwkrgrorj问
参考文献[1] V. Vedia,H。Mach,L。Fraile,J。Udías,S。Lalkovski,物理学中的核仪器和方法A:加速器,光谱仪,探测器和相关设备795,144(2015)。doi https://doi.org/10.1016/j.nima.2015.05.058。URL https://www.sciencectirect.com/science/article/pii/s0168900215007172 [2] V. V. V. V. V. V. V. V. V. V. V. V. V. V. (2017)。doi https://doi.org/10.1016/j.nima.2017.03.030。 URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。 doi https://doi.org/10.1016/j.nimb.2019.04.044。 URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。 doi https://doi.org/10.1016/j.apradiso.2016.11.017。 URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。 doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2017.03.030。URL https://www.sciendirect.com/science/article/pii/s0168900217303704 [3] 463,394(2020)。doi https://doi.org/10.1016/j.nimb.2019.04.044。URL https://www.sciencecret.com/science/article/pii/s0168583x19302289 [4] E. Picado,M。Carmona-Gallardo,J。Calmona-Gallardo,J。Cal-González,J。Cal-González,L。Fraile,L。Frail,L。Frail,H。Mach,H。Mach,H。Mach,H。Mach,J.Udíad,V。V. v. v. vedia,71(2012)。doi https://doi.org/10.1016/j.apradiso.2016.11.017。URL https://www.sciendirect.com/science/article/pii/s09 [5] (2013)。doi https://doi.org/10.1016/j.nima.2012.11.009。 URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。doi https://doi.org/10.1016/j.nima.2012.11.009。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。 hamamatsu光子系统R9779数据表。URL https://www.sciencecendirect.com/science/article/pii/s0168900212013010 [6] Hamamatsu。hamamatsu光子系统R9779数据表。URL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.phpURL https://www.digchip.com/datasheets/parts/datasheet/190/r9779-pdf.php
摘要:近几年,世界各地已经展示了许多血液和药品运送无人机的例子,这些无人机主要依靠的是医学界并不常见的航空经验。说到无人机运送,注意力应该集中在最重要的事情上:运输的救命物品。传统的箱子通常不是实时监测温度的,而且不适合无人机运输,因为它们很重、很笨重。这意味着运送的生物医学特性至关重要。配备人工智能 (AI) 的智能胶囊是有史以来第一个为易腐烂和高价值医疗产品提供全自动无人机运送服务的系统,集成了实时质量监控和控制。它由一个智能外壳组成,能够引导任何连接到它的自主飞行器,专门用于运输血液、器官、组织、测试样本和药物等。该系统监测产品的状况(例如温度、搅拌和湿度),并在需要时通过利用振动等来调整它们,以保持所需的搅拌,确保货物在交付后即可使用。智能胶囊还利用外部温度来减少无人机的能量消耗,从而延长无人机的电池寿命和飞行距离。该系统取代了对专业司机和传统道路运输工具的需求,同时保证遵守所有适用的安全法规。进行了一系列 16 项实验测试,以证明使用智能胶囊管理飞行和内部货物交付的可能性。共执行了 81 次任务,总飞行时间为 364 分钟。智能胶囊通过将交付时间缩短高达 80% 并将成本降低至少 28%,大大提高了医疗保健系统的应急响应和效率。本文讨论了智能胶囊及其基于人工智能的无人机交付支持技术。这项工作的目的是展示使用基于人工智能的设备管理无人机送货的可能性。
-加强机上和地勤人员的信息网络,监视设备状态,掌握潜在故障的迹象,采取预防措施,缩短故障时的恢复时间(INTEROS) -耐碰撞车辆(防偏置碰撞结构) -改进门的开启方式,即使人员被卡在门之间,也可以轻松拉出物品,从而防止被拖拽 -主要设备的双重化
在按照目视飞行规则飞行时,飞行员主要依靠视觉扫描来避开其他飞机和空中碰撞威胁。联邦航空管理局的记录表明,与无人机的近距离接触正在增加,2016 年报告的无人机系统 (UAS) 目击或近距离碰撞达到 1,761 起。这项研究旨在评估飞行员目视检测配备频闪灯的 UAS 平台的有效性。10 名飞行员组成的样本驾驶通用航空飞机,对配备频闪灯的小型 UAS (sUAS) 进行五次拦截。参与者被要求指出他们何时目视发现无人机。比较飞机和 sUAS 平台的地理位置信息以评估能见距离。研究结果用于评估日间频闪灯作为一种增强飞行员 sUAS 检测、能见度和防撞能力的方法的有效性。参与者在 7.7% 的拦截中发现了无人机。由于缺乏数据点,作者无法确定频闪灯是否能改善 UAS 视觉检测。作者建议进一步研究使用 sUAS 安装的频闪灯进行夜间视觉检测的有效性。
无人驾驶飞行器 (UAV) 是一种无需飞行员的飞行器,可由地面控制中心的飞行员操控,或自主执行预定飞行计划的飞行器。无人机最初起源于军事应用,但如今已在科研 (Nex and Remondino, 2014)、物流 (Li et al., 2022)、农业 (Bouguettaya et al., 2022)、纪录片拍摄 (Firmansyah et al., 2021)、消防 (Akhloufi et al., 2021)、军事行动 (Liu et al., 2022) 等诸多领域得到越来越广泛的应用。随着无人机的利用率和应用范围不断扩大,飞行安全和运行效率也变得越来越重要。为了使无人机能够有效、安全地完成既定任务,高度的自主性至关重要。自主无人机应该具备安全导航能力,利用传感器和微处理器高效执行任务,最重要的是,配备嵌入式人工智能。目前的军用和民用无人机采用飞行控制系统和特定传感器来完成飞行任务(Greco 等人,2015),但嵌入式人工智能也有限。无人机利用