1 Aura Vector Consulting,3041 Turnbull Bay Road,New Smyrna Beach,FL 32168 2 Toyota Technical Center,8777 Platt Road,Saline,MI 48176 摘要 本研究涉及对 Cessna T-303 Crusader 双引擎飞机垂直尾翼疲劳裂纹扩展的飞行中监测。在实验室中对带凹槽的 7075-T6 铝制飞机槽梁支撑结构进行了周期性测试。在这些疲劳测试期间采集了声发射 (AE) 数据,随后将其分为三种故障机制:疲劳开裂、塑性变形和摩擦噪声。然后使用这些数据来训练 Kohonen 自组织映射 (SOM) 神经网络。此时,在 T-303 飞机垂直尾翼的肋骨之间安装了类似的槽梁支撑结构作为冗余结构构件。随后从初始滑行和起飞到最终进近和着陆收集 AE 数据。然后使用实验室训练的 SOM 神经网络将飞行测试期间记录的 AE 数据分类为上述三种机制。由此确定塑性变形发生在所有飞行区域,但在滑行操作期间最为普遍,疲劳裂纹扩展活动主要发生在飞行操作期间 - 特别是在滚转和荷兰滚机动期间 - 而机械摩擦噪声主要发生在飞行期间,在滑行期间很少发生。SOM 对故障机制分类的成功表明,用于老化飞机的原型飞行结构健康监测系统在捕获疲劳裂纹扩展数据方面非常成功。可以设想,在老化飞机中应用此类结构健康监测系统可以警告即将发生的故障,并在需要时而不是按照保守计算的间隔更换零件。因此,继续进行这项研究最终将有助于最大限度地降低维护成本并延长老化飞机的使用寿命。关键词:老化飞机,飞行中疲劳裂纹监测,Kohonen自组织映射,神经网络,结构健康监测 简介 飞机疲劳开裂 如今,飞机的使用寿命通常比汽车更长。这是由于许多因素造成的,包括飞机的成本、政府法规以及故障的严重后果。由于飞机的使用寿命预期如此之长,因此引发了许多问题。问题的主要根源可能是疲劳裂纹的存在和增长,这也是本研究的主题。修复疲劳裂纹造成的损坏的能力一直不是问题,但疲劳裂纹增长的检测和监测已被证明是一个真正的挑战。疲劳开裂是由于低于正常延展性金属的屈服强度的循环载荷导致的脆性断裂。裂纹尖端的高度集中应力导致在裂纹前方形成心形塑性变形区。该塑性区应变随着循环载荷而硬化,当金属的延展性耗尽时会断裂
1. 背景 当前车辆发展的主要趋势是车辆中的电气和电子系统数量不断增加。引入这些系统是为了为客户提供更多舒适性和安全性功能。本文的第一部分通过示例和当前 EEA 解决方案的 ECU(电子控制单元)技术概述介绍了正在进行的 EEA(电气电子架构)解决方案的背景。本描述还介绍了未来几年的市场趋势,其中 ADAS 系统和 HEV/EV 具有更大的 ECU 扩散潜力。但是,为了阻止这种 ECU 增长以应对单纯的车辆集成并控制电子系统成本,本文的第二部分将说明 EEA 设计的目标假设,该假设为汽车行业带来了未来的技术挑战。在当今的车辆中,在 EEA 系统中添加新功能主要是通过添加一个到几个带有自己的传感器/执行器 (S/A) 组件的 ECU 来实现的。 ECU 的构建主要归功于 EEA 结构,在该结构中,当前的 ECU 得以维护以支持车辆在以下阶段的限制:- 开发阶段,设计遗留和强大的集成要求、工具、技术
本手册是《不列颠哥伦比亚省生物多样性组成部分标准》(CBCB)系列之一,该系列介绍了专门为具有类似清单要求的物种群设计的标准协议。该系列包括一本入门手册(物种清单基础,第 1 号),其中描述了 RIC 的历史和目标,并概述了根据 RIC 标准进行野生动物清单的一般过程,包括清单强度的选择、采样设计、采样技术和统计分析。《物种清单基础》手册提供了重要的背景信息,在开始 RIC 野生动物清单之前应彻底阅读。RIC 标准还适用于脊椎动物分类学(第 2 号)和动物捕获和处理(第 3 号)。参与遥测的现场人员应确保在对野生动物进行任何约束或处理之前,他们完全熟悉后者的标准。