7.1 Adoption Barriers........................................................................................................25 7.2 Future Research Paths.............................................................................................. 27 8.Conclusion........................................................................................................................30 Bibliography......................................................................................................................... 33 Plagiarism Statement...........................................................................................................36
[CryptographiceCeption:不良数据。 ]system.security.cryptography.cryptographicexception.throwcryptographicexception(int32 hr)+43 system.security.cryptography.utils._decryptdata(safekeyhandle hkey hkey hkey,byte,byte,byte,byte []数据paddingMode,boolean fdone)+0 system.security.cryptography.cryptoapitransform.transformfinalblock(byte [byte [] inputBuffer,int32 InputOffset,int32 InputCount,intputcount)+285 +285 Sytem.security.security.cryptosem.cryptograpent engrypteddata,对称性符号对称性)+327 engryption.decryptxml(字符串filepath)+394 proford_report.page_page_load(对象发件人,EventArgs E)+338 Sytem.Web.ui.control.onload(Eventrol.Onload(Eventargs e) +90 system.web.ui.page.processrequestmain(boolean includestagesbeforeasyncpoint,boolean incluctages afterAsyncpoint)+1533
摘要 - 快速充电站(FCSS)的电力计量计算器(EEM),是电动汽车(EV)行业的关键基础设施,并且是车辆到网格(V2G)技术的重要载体,是确保公平电能交易的基石。传统的现场验证方法受其高成本和低效率限制的限制,努力与FCS的全球快速扩张保持同步。在响应中,本文采用了数据驱动的方法,并提出了测量绩效比较(MPC)方法。通过利用电荷(SOC)作为介质的估计值,MPC建立了多个FCS的EEM表现的比较链。因此,启用了具有高效率的FCS的EEM错误的估计。此外,本文总结了估计结果的干扰因素,并建立了相应的误差模型和不确定性模型。另外,提出了FCSS中是否存在EEM性能缺陷的一种方法。最后,验证了MPC方法的可行性,结果表明,对于精度级别为2%的FCSS,判别精度超过95%。MPC为FCSS的EEM绩效提供了可行的方法,为公平而公正的电力交易市场奠定了基础。
摘要 - Kinesthetic Motor图像(KMI)是一项心理任务,如果正确执行,则在运动训练或康复中使用脑部计算机界面(BCI)可能非常相关。不幸的是,这项心理任务通常很复杂,并且可以导致其执行情况高度可变性,从而减少其潜在的好处。KMI任务如此困难的原因是因为没有标准化的方式来指导该主题在这项心理任务中。这项研究提出了一种创新的BCI,称为Grasp-It,以支持KMI任务的学习,并评估两种不同的学习方法:(i)第一个由实验者和渐进率指导的,基于渐进率的概念,(ii)第二个学习者是单独的,并且通过试验和错误进行了学习和练习。基于脑电图分析的发现和主观问卷调查验证了grasp-it bci的设计,并为KMI学习方式开辟了观点。索引项 - Kinesthetic Motor图像;大脑计算机界面; grasp-it;中风康复; BCI学习环境;人类计算机相互作用
现有的监督学习的概括理论通常采用整体方法,并为整个数据分布的预期概括提供了界限,该方法隐含地假设该模型对所有不同类别的概括都相似。但是,在实践中,不同类别之间的概括性能存在显着差异,而现有的泛化范围无法捕获。在这项工作中,我们通过从理论上研究班级化误差来解决这个问题,从而量化了每个单独类别的模型的概括性能。我们使用KL Divergence得出了一种新的信息理论,用于类临时误差,并使用有条件相互构成的有条件相互结合的最新进展进一步获得了几个更紧密的界限,从而实现了实际评估。我们从经验上验证了各种神经网络中提出的界限,并表明它们准确地捕获了复杂的类概括行为。此外,我们证明了这项工作中开发的理论工具可以应用于其他几种应用程序。
序列 MSWDDAIEGV DRDTPGGRMP RAWNVAARLR AANDDISHAH VADGVPTYAE LHCLSDFSFL RGASSAEQLF ARAQHCGYSA LAITDECSLA GIVRGLEASR VTGVRLIVGS EFTLIDGTRF VLLVENAHGY PQVCGLVTTA RRAASKGAYR LGRADVEAQF RDVAPGVFAL WLPGVQPQAE QGAWLQQVFG ERAFLAVELH REQDDGARLQ VLQALAQQLG MTAVASGDVH MAQRRERIVQ DTLTAIRHTL PLAECGAHLF RNGERHLRTR RALGNIYPDA LLQAAVALAQ RCTFDISKIS YTYPRELVPE GHTPTSYLRQ LTEAGIRKRW PGGITAKVRE DIEKELALIA LKKYEAFFLT过程RVRERMQGKG YASTFIDQIF EQIKGFGSYG FPQSHAASFA KLVYASCWLK RHEPAAFACG LLNAQPMGFY SASQIVQDAR RGSPERERVE VLPVDVVHSD WDNTLVGGRP WRSAADPGEQ PAIRLGMRQV AGLSDVVAQR IVAARTQRAF ADIGDLCLRA ALDEKACLAL AEAGALQGMV GNRNAARWAM AGVEARRPLL PGSPEERPVA FEAPHAGEEI LADYRSVGLS LRQHPMALLR PQMRQRRILG LRDLQGRPHG SGVHVAGLVT QRQRPATAKG TIFVTLEDEH GMINVIVWSH LALRRRRALL ESRLLAVRGR WERVDGVEHL IAGDLHDLSD LLGDMQLPSR DFH
1临床免疫学实验室,炎症和过敏利维亚,医学与药学学院,哈桑二世大学,卡萨布兰卡20250,摩洛哥; drailalfatima@gmail.com(F.A。); jalilaelbakkouri@gmail.com(J.E.B。); khalid.zerouali2000@gmail.com(k.z.); profbousfin@gmail.com(A.A.B。)2细菌学,病毒学和医院卫生实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥3,摩洛哥3细菌学和病毒学实验室,医学和药学学院,哈桑二世大学,卡萨布兰卡20250,20250,20250 20250,摩洛哥5免疫学实验室,伊本·罗奇大学医院,卡萨布兰卡20250,摩洛哥6摩洛哥6人类传染病的人遗传学实验室,内克斯特分公司,国立国家基金会,国家de lasanté等人等人,de la recherchemédicale(Inserm),75015 Paris,France,France; vivien.beziat@inserm.fr(V.B.); emmanuelle.jouanguy@inserm.fr(E.J.); casanova@mail.rockefeller.edu(J.-L.C.)7人类传染病遗传学实验室,洛克菲勒分公司,洛克菲勒大学,纽约,纽约,纽约,10065,美国8霍华德·休斯医学研究所,雪佛兰Chase,MD 20815,美国 *通信:
摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。
序列 MSWDDAIEGV DRDTPGGRMP RAWNVAARLR AANDDISHAH VADGVPTYAE LHCLSDFSFL RGASSAEQLF ARAQHCGYSA LAITDECSLA GIVRGLEASR VTGVRLIVGS EFTLIDGTRF VLLVENAHGY PQVCGLVTTA RRAASKGAYR LGRADVEAQF RDVAPGVFAL WLPGVQPQAE QGAWLQQVFG ERAFLAVELH REQDDGARLQ VLQALAQQLG MTAVASGDVH MAQRRERIVQ DTLTAIRHTL PLAECGAHLF RNGERHLRTR RALGNIYPDA LLQAAVALAQ RCTFDISKIS YTYPRELVPE GHTPTSYLRQ LTEAGIRKRW PGGITAKVRE DIEKELALIA LKKYEAFFLT过程RVRERMQGKG YASTFIDQIF EQIKGFGSYG FPQSHAASFA KLVYASCWLK RHEPAAFACG LLNAQPMGFY SASQIVQDAR RGSPERERVE VLPVDVVHSD WDNTLVGGRP WRSAADPGEQ PAIRLGMRQV AGLSDVVAQR IVAARTQRAF ADIGDLCLRA ALDEKACLAL AEAGALQGMV GNRNAARWAM AGVEARRPLL PGSPEERPVA FEAPHAGEEI LADYRSVGLS LRQHPMALLR PQMRQRRILG LRDLQGRPHG SGVHVAGLVT QRQRPATAKG TIFVTLEDEH GMINVIVWSH LALRRRRALL ESRLLAVRGR WERVDGVEHL IAGDLHDLSD LLGDMQLPSR DFH