一种新合成的(碳硫硫醇)阿沙氨酰胺衍生物N1,N2-双(2 - ((((((2 - (((2 - ((((2 - ((((2 - ))使用FT-IR,1 H-NMR和13 C-NMR证明了化学结构。根据体重减轻(WL),电力动力学极化(PDF)和电化学阻抗光谱(EIS)技术,合成抑制剂表现出较高的腐蚀抑制效率。腐蚀速率降低,抑制效率随抑制剂的浓度线性增加,在0.01m时达到93.3%。bis n的吸附遵守langmuir的吸附等温线。计算出的吸附等温线参数∆ g ads是一个负值等于至10.14 kJ/mol,这表明双n被吸附在铜表面上并实现自发过程。使用密度功能理论(DFT)评估BIS N对金属保护增强的效率。还包括对量子不同描述符的评估和讨论。关键字:铜腐蚀;抑制;电位动力学极化;电化学阻抗;氯化钠; DFT。
摘要:在这项工作中,我们描述了使用乙醇作为液体有机氢载体(LOHC)的季节性储能的绿色方法的好处和挑战。我们评估了从乙醇(ETOH)释放到形成乙酸乙酯(ETOAC)的循环效率,作为用过的LOHC,以及随后从EtOAC催化的EtOH再生,由单个分子催化剂,Ru-macho,Ru-macho,Ru-macho,ru-macho,ru-macho,ru-macho,h 2,轻度的反应温度和高度选择性温度和高高的反应温度和高高的选择性。从实验和计算研究中,我们能够最大程度地减少催化剂失活,再生活性催化剂后反应,并建立相对于由Ru-Macho催化的周期途径的停用途径的能量。基于这些发现,我们进行了反应堆设计分析,以确定基于ETOH的存储系统的足迹,以通过存储H 2的5公吨(MT)提供85 MWH的能量。我们得出的结论是,维持h 2二压压力所需的供暖和冷却提出了重要的工程挑战,以广泛部署该系统。关键字:RU-MACHO,氢存储,脱氢,反应堆设计,停用■简介
命名法Asce Asce Aspen资本成本估算器BCD基础催化解构BDO 2,3-丁烷二醇BTU英国热热单元Capex Capex资本支出Co 2碳二氧化碳二氧化碳二氧化碳陡峭的液类液体液体Cubi Cubi Cubi Cubi催化催化型dmr dmr dmr dmr Gallon Gallon gallon gallon gallon gallon gallon gallon callon callon gallon callon fci fci fci fci fci fci fci fci fci fci fci fci fci fci fci fci。等效的HDO水氧合HMF羟基甲基含量是不溶性固体,电池内部限制LB磅LHV LHV较低的加热价值MEK甲基乙基酮(2-丁烷)MFSP SPSP SPSS MFSP最低燃料燃料最低燃料销售MM MM MM VR MILM MMVR NIREN NRECOR NREN-NREL EFRICANT NREN-rENEN-NRECOM NRECORICON NRECRID NRRIC nrriqurip Nrrtrriq operriq PNNL太平洋西北国家实验室PSA压力摆动吸附SS可溶性固体TCI总资本投资TDC总直接成本茶技术经济分析VFP真空过滤器付费wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt wwt
16 1.疫苗生产1.2 非活性成分氨丁三醇;盐酸氨丁三醇 莫德纳公司 292219 Evenett 等,OECD,WCO,WTO 17 1. 疫苗生产 1.2 非活性成分 乙酸 莫德纳公司 291521 Evenett 等,OECD,WCO,WTO 18 1. 疫苗生产 1.2 非活性成分 乙酸钠 莫德纳公司 291529 Evenett 等,OECD,WCO,WTO 19 1. 疫苗生产 1.2 非活性成分 聚山梨醇酯-80 杨森和阿斯利康公司 340242 Evenett 等,OECD,WCO,WTO 20 1. 疫苗生产 1.2 非活性成分 2-羟丙基-β-环糊精 杨森公司 350510 OECD,WCO,WTO 21 1. 疫苗生产 1.2 非活性成分柠檬酸一水合物 杨森制药 291814 OECD、WCO、WTO 22 1. 疫苗制造 1.2 非活性成分 柠檬酸三钠二水合物 杨森制药 291815 OECD、WCO、WTO 23 1. 疫苗制造 1.2 非活性成分 乙醇 杨森和阿斯利康制药 220710 未变性乙醇,酒精浓度按体积计为 80%vol. 或更高
目的:本研究旨在设计和评估基于微海绵的盐酸异丙嗪给药系统。微海绵给药系统设计用于药物的位点特异性和控制释放,通过使用邻苯二甲酸醋酸纤维素来改善药物的位点特异性吸收。材料和方法:微海绵采用改进的准乳液溶剂扩散技术配制而成。通过 FTIR 研究了盐酸异丙嗪、邻苯二甲酸醋酸纤维素、乙基纤维素和聚乙烯吡咯烷酮之间的化学相互作用,FTIR 结果证实药物和聚合物之间没有化学反应。药物和聚合物的相容性研究通过 DSC 得到证实。结果:FTIR 结果证实药物和聚合物之间没有化学反应。体外药物释放率在 91.97% 至 98.78% 之间,配方 MS5 显示出最高的 % CDR。优化后的配方 (MS5) 表现出良好的包封率 (93.6%)、浮力 (78%) 和累积药物释放率 (98.78%)。SEM 显示异丙舒林盐酸盐以控释模式从球形多孔微海绵中释放。结论:本研究提供了一种新方法来配制和评估异丙舒林盐酸盐微海绵以治疗妊娠期间早产。
III类过氧化物酶(POD)在各种发育过程中以及对生物和非生物胁迫的响应中发挥关键功能。然而,III类POD基因在小麦种子休眠(SD)和发芽中的特定作用仍然难以捉摸。在这里,我们根据转录组数据和表达分析确定了一个名为Taper12-3a的小麦III类POD基因。taper12-3a分别通过SD采集和释放显示出降低和增加的表达趋势,表明与SD和发芽有显着关联。它在小麦种子中高度表达,并位于内质网和细胞质中。发芽测试表明,锥度12-3a在第411条背景下用甲烷硫酸乙酯(EMS)的小麦突变体进行了负调节的SD,以及在转基因拟南芥和水稻线以及小麦突变体中呈阳性介导的发芽。进一步的研究表明,锥形12-3a通过与gibberellin和脱甲酸生物合成,分解代谢和转基因水稻种子中的信号通路来调节SD和发芽。这些发现不仅为调节小麦SD和发芽的锥形12-3a的未来功能分析提供了新的见解,而且还有助于理解这些过程中涉及的复杂调节机制。
用于微生物专门代谢物的超临界液提取(SFE)方法在文献中非常稀少,限于液体培养。我们在这里提出了一种新的样品制备方法,以实现固态培养的专门代谢物的SFE。sfe参数,包括CO 2压力,提取细胞的温度和共溶剂的百分比,在核核酸菌群SNB-CN111的固态培养物(一种产生Azaphilone copments的丝状真菌)的情况下进行了优化。然后通过逆期液相色谱法与电喷雾电离和串联质谱法分析提取物的代谢组成。由METGEM软件产生的产生的分子网络允许在不同条件下提取的代谢产物的注释,从而根据Azaphilone亚家族的极性证实了裂缝的富集。首先,100%CO 2的分数比己烷浸渍高十倍,SFE方法的优化导致提取的产量是将CO 2与乙醇混合在一起时的两倍高,是乙醇2的高度,并且表明CO 2 /乙醇SFE是比标准浸润方法更环保和高效的量,以使其对Azaphilo-neSes的萃取相比。
在相对端,尚未探索盐浓度以形成超级稀释电解质,这是考虑到低离子电导率的可能浓度极化5。因此,今天仍然使用1 m(mol/l)的标准浓度。4然而,由于Na +的STOKES半径和脱溶能的较小,而Na-Ion电池(NIBS)有可能采用低浓度的电解质获得足够的动力学性能。6,7此外,减少昂贵的盐含量可以有效地控制Nibs的成本(图S1),8,这对在网格存储中的应用是有益的。在此,我们提议在第一次使用超浓度的电解质(0.3 m)为实用的Na-ion全细胞使用,这是令人惊讶的,它在稀释电解质化学的较宽工作温度范围内实现了良好的性能。这种有吸引力的电解质配方是通过反向设计提供的,它为解决极端条件下可充电电池的故障问题提供了新的见解。通过将NAPF 6溶解在碳酸乙酯(EC)/丙烯酸丙二醇(PC)(1:1 vol%)的情况下,制备了一系列具有不同浓度的电解质,而没有额外的添加剂 div>
依托泊苷有 50 或 100 mg 液体胶囊和 20 mg/mL 注射液两种形式。明胶胶囊中还可能含有柠檬酸、明胶、甘油、氧化铁、对羟基苯甲酸酯(乙基和丙基)、聚乙二醇 400、山梨醇和二氧化钛。注射用依托泊苷浓缩液是药物在载体中的无菌非水溶液,载体可以是苯甲醇、柠檬酸、乙醇、聚乙二醇 300 或聚山梨醇酯 80。注射用浓缩液为澄清的黄色溶液,pH 值为 3-4。注射用依托泊苷磷酸盐是一种无菌、无热原的冻干粉,含有柠檬酸钠和葡聚糖 40;用注射用水将药物稀释至 1 mg/mL 浓度后,溶液的 pH 值为 2.9(Gennaro,1995 年;美国医院处方服务处,1997 年;加拿大药学协会,1997 年;英国医学协会/英国皇家药学协会,1998 年;Editions du Vidal,1998 年;Rote Liste Sekretariat,1998 年;Thomas,1998 年)。英国药典要求限制以下杂质:4′-羧基乙基亚木脂素 P、苦基乙基亚木脂素 P、α-乙基亚木脂素 P、木脂素 P 和 4′-去甲基表鬼臼毒素(英国药典委员会,1994 年)。
抽象一种快速,简单和简单的方法,用于通过薄层色谱(TLC)和酶促测试的结合结合甲状腺素HIRSUTA(EATH)的乙酰乙酸乙酯提取物的α-葡萄糖苷酶抑制剂的分离和纯化。eath具有有效的α-葡萄糖苷酶抑制作用。在这项研究中,我们开发了一种简单的TLC-酶试验(TLC/EZ)组合,以分离出Eath的α-葡萄糖苷酶抑制剂。将eath分离在硅胶柱上,然后在TLC板上分离。TLC分离后,应用TLC/EZ组合方法。使用葡萄糖氧化酶过氧化物酶法(GOD -POD),直接在TLC板中直接检测α-葡萄糖苷酶抑制剂。 在有利于TLC/EZ方法的TLC中获得了活性化合物的良好检测。 然后使用高性能液相色谱质量光谱法(HPLC - MS)分析对活性化合物进行表征。 EATH中存在的主α-葡萄糖苷酶抑制剂具有分子离子[m + h] +在m/z = 543。 该提出的方法适用于Eath中存在的α-葡萄糖苷酶抑制剂的可靠分离和纯化。 它可以作为植物提取物中α-葡萄糖苷酶抑制剂分离和纯化的经典方法的有趣替代方法。α-葡萄糖苷酶抑制剂。在有利于TLC/EZ方法的TLC中获得了活性化合物的良好检测。然后使用高性能液相色谱质量光谱法(HPLC - MS)分析对活性化合物进行表征。EATH中存在的主α-葡萄糖苷酶抑制剂具有分子离子[m + h] +在m/z = 543。该提出的方法适用于Eath中存在的α-葡萄糖苷酶抑制剂的可靠分离和纯化。它可以作为植物提取物中α-葡萄糖苷酶抑制剂分离和纯化的经典方法的有趣替代方法。