胡一鹏 1,2,4 约瑟夫·雅各布 1,3 杰弗里·JM·帕克 1,5,6 大卫·J·霍克斯 1,2,4 约翰·R·赫斯特 3 丹奈尔·斯托亚诺夫 1,2,5 1 伦敦大学学院医学图像计算中心,2 威康/EPSRC 介入和外科科学中心,3 伦敦大学学院呼吸科,4 医学物理和生物医学工程系,5 计算机科学系,伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 6 Bioxydyn Limited,Pencroft Way,曼彻斯特,M15 6SZ,英国 通信:yipeng.hu@ucl.ac.uk 由严重急性呼吸系统综合症冠状病毒 2 引起的 COVID-19 大流行,发生在一个被基于大数据、计算能力和神经网络的人工智能(AI)迅速改变的世界。近年来,这些网络的目光越来越多地转向医疗保健领域的应用。COVID-19 是一种全球性疾病,对健康和经济造成破坏,或许不可避免地会吸引全球学术界和工业界的计算机科学家的关注和资源。AI 支持应对疫情的潜力已在广泛的临床和社会挑战 [1] 中提出,包括疾病预测、监测和抗病毒药物发现。随着疫情对世界人民、工业和经济的影响不断扩大,这种情况可能会持续下去,但对当前疫情的一个令人惊讶的观察是,迄今为止,AI 在 COVID-19 管理中的影响有限。本通讯重点探讨了在前线医疗服务中未能成功采用为 COVID-19 诊断和预后开发的 AI 模型的潜在原因。我们强调了模型在疫情的不同阶段必须解决的不断变化的临床需求,并解释了将模型转化为反映当地医疗环境的重要性。我们认为,基础研究和应用研究对于加速人工智能模型的潜力都至关重要,在迅速发展的疫情期间尤其如此。 从这个角度看,对 COVID-19 的反应,或许可以让我们一窥全球科学界应如何应对未来的疾病爆发,以更有效地应对。
除了治理方面的变革之外,政府还希望,巴黎综合理工学院能够根据多份报告以及巴黎综合理工学院国际科学理事会的建议,全权承担目前分布在其所有机构的研究职能。该研究所的研究和创新确实必须受益于行政和组织简化,以尽可能地为其国际影响力和国民经济做出贡献,特别是通过积极参与绿色再工业化项目和加强我们的工业和数字主权。
该项目的目的是观察两个人工智能代理(一个“寻找者”和一个“隐藏者”)在玩简化版的捉迷藏游戏时的发展。这些代理将通过机器学习得到改进,并且只会被赋予对游戏规则的理解和在游戏的网格状空间中导航的能力;它们不会被教授或提供任何策略,而是从头开始学习。特别有趣的是观察随着游戏中引入新元素(例如障碍物、门和其他环境影响),隐藏者和寻找者智能的特殊游戏风格。通过这种观察,我希望不仅能确定捉迷藏游戏中的关键策略,还能更好地了解机器学习 AI 搜索和隐藏模式的演变,这与网络、人工智能和网络安全等多个领域相关。
参考文献 [1] Litjens, G., Et Al. (2017)。“医学图像分析中的深度学习调查。”医学图像分析,42,60-88。 [2] Esteva, A., Et Al. (2021)。“深度学习支持的医学计算机视觉。”自然生物医学工程,5(6),541-551。 [3] Haidegger, T. (2021)。“人工智能驱动的机器人手术:趋势、进步和挑战。”IEEE 生物医学工程评论,14,27-45。 [4] Ferguson, S., Et Al. (2019)。“用于预测神经外科术后并发症的机器学习模型。”神经外科评论,43(4),891-900。 [5] Bricault, I., Et Al. (2021)。 “人工智能驱动的机器人神经外科手术:技术和临床结果。”《神经外科杂志》,135(2),543-553。[6] Shen, D. 等人(2019 年)。“医疗保健中的人工智能:个性化和精准医疗。”《自然医学》,25(1),44-56。[7] Senders, JT 等人(2018 年)。“神经外科中的机器学习:一项全球调查。”《神经外科评论》,41(3),585-594。[8] Senders, JT 等人(2020 年)。“用于神经外科结果预测的人工智能。”《柳叶刀数字健康》,2(7),E352-E361。[9] Topol, EJ(2019 年)。“高性能医疗:人类与人工智能的融合。” Nature Medicine,25(1),44-56。[10] Rudin,C.(2019)。“停止解释高风险决策的黑箱机器学习模型,并使用可解释的
13.摘要(最多 100 个字)本研究分析了美国陆军人工智能和专家计算机系统的发展,以及陆军在这些技术的未来发展中可能发挥的作用。本研究调查了陆军对这些计算机系统的开发和使用情况。它评估了陆军是否应该在这些系统的开发中发挥领导者或角色。陆军在这些技术上的领导或跟随决定将对未来规模较小、资源较少的部队的有限资源产生重大影响。鉴于财政资源和人员减少的趋势,本研究将研究这些问题。对民用部门对这些系统的开发和使用情况进行了评估,以确定陆军通过使用这些系统获得的收益。这些系统对陆军各种要求的适应性进行了评估,并评估了系统的近期和远期成本
摘要。我们分析了共同参与人工智能 (AI) 的企业和机构的部门和国家系统。除了将 AI 作为通用技术或其特定应用领域的分析之外,我们还借鉴了部门系统的进化分析,并询问“谁在做什么?”在 AI 中。我们提供连接 AI 开发者、制造商和用户的复杂相互依赖模式的细粒度视图。我们区分了 AI 支持、AI 生产和 AI 消费,并分析了企业和社区之间新兴的共同专业化模式。我们发现,人工智能的供应以少数几家大型科技公司为主导,这些公司对人工智能的下游应用(例如搜索、支付、社交媒体)支撑了人工智能最近的大部分进展,同时也提供了必要的上游计算能力(云和边缘)。这些公司在人工智能研究领域主导着顶尖学术机构,进一步巩固了它们的地位。我们发现,只有少数能够数字化和获取高质量数据的公司采用了人工智能,并从中受益。我们考虑了人工智能行业在三个主要地区(中国、美国和欧盟)的不同发展情况,并注意到少数公司正在构建全球人工智能生态系统。我们的贡献是以人工智能为例展示进化思维的演变:我们展示了从国家/部门系统到三螺旋/创新生态系统和数字平台的转变。我们得出了如此广泛的进化理论对理论和实践的影响。
1。参与者将确定从发展的角度与教育者合作的线索。2。参与者将认识到某些教育者反应的动态,同时也认识到每个发展阶段的好处和挑战。3。参与者将学会将行为视为监管需求的线索。4。参与者将学习如何支持成长中的学生的宽容窗口,更有效地重新布线,并重新模仿神经系统以支持学习和成长。5。参与者将采用在整个上学期间为学生和成人提供一定剂量的法规的方法。6。参与者将把知识转化为创建支持学生自我意识和自我反思的环境,从而导致发现自己的监管需求,同时也支持成年人的监管需求。7。参与者将探讨如何从系统和分层的角度将这些方法纳入这些方法。8。参与者将学习在失调的时刻进行调节,从而帮助他们避免疲惫和倦怠,因为他们支持教育者这样做。