严重程度及其进化的补偿。EMM 提高了我们对癌症、糖尿病和衰老等复杂疾病的理解,并阐明了许多器官系统中的疾病机制。测序技术和基因组编辑工具的快速发展使 EMM 的效用突飞猛进,并导致了 EMM 的发现、描述和使用的繁荣,尤其是在鱼类中。鱼类是脊椎动物中最具多样性的群体,其深度辐射产生了千变万化的特殊表型,其中许多表型对人类是致病的,但在该物种的特殊栖息地中具有适应性。重要的是,进化的补偿可以为新的疾病治疗提供途径。本综述总结了当前使用鱼类 EMM 来增进我们对人类疾病理解的研究。
入侵物种是对生物多样性、生态系统完整性、农业、渔业和公共健康的最大威胁之一,全球每年造成的经济损失高达数千亿美元 1、2。据预测,全球气候变化将以前所未有且复杂的方式增加入侵者的数量和影响 3-8,需要全面了解促进生物入侵成功的机制 9-12。鉴于极小比例的外来物种能够在新栖息地定居,然后成为入侵物种,因此长期以来的争论重点是导致入侵者成功的确切因素 13。人们提出并检验了许多假设,包括繁殖体压力、运输机会、栖息地匹配、繁殖力和种群大小的作用。然而,这些假设并未在不同的分类群和入侵事件中得到一致的实证支持,因此预测能力有限 14-18。 Lee 和 Gelembiuk 19 提出了一种可促进入侵种群出现的进化机制,并假设原生范围内的选择制度是影响入侵成功的关键因素 19 。他们观察到入侵种群往往起源于受到干扰或随时间变化的栖息地 19、20 。因此,他们假设许多入侵种群起源于因环境条件波动而经历平衡选择的原生种群。这种机制往往在相对于环境波动期而言世代时间较短的生物体中起作用,因此不同的等位基因会在不同世代中受到选择的青睐 19 。这种选择制度可以维持原生范围内的遗传变异,并为入侵期间正向选择提供遗传基础 10、15、17、21 – 24 。然而,这一假设此前尚未经过实证检验。平衡选择是自然选择的一种形式,它有利于一个基因座上的多个等位基因,以及它维持地位的能力
脑表达基因的进化速度明显慢于其他组织中表达基因的进化速度,这一现象可能是由于高级功能限制造成的。其中一个限制可能是神经元组合对信息的整合,从而增强环境适应性。本研究通过三种类型的同步探索了神经元中信息整合的生理机制:化学、电磁和量子。化学同步涉及多巴胺和乙酰胆碱等神经递质的弥散释放,导致传输延迟数毫秒。电磁同步包括动作电位、电间隙连接和偶联。电间隙连接使皮质 GABA 能网络内的快速同步成为可能,而偶联则使轴突束等结构能够通过细胞外电磁场同步,速度超过了化学过程的速度。据推测,量子同步涉及离子通道通过期间的离子相干性和髓鞘内光子的纠缠。与化学和电磁过程中的有限时间同步不同,量子纠缠提供瞬时非局部相干状态。神经元可能从较慢的化学扩散进化为快速的时间同步,离子通过皮质 GABAergic 网络内的间隙连接可能促进快速伽马波段同步和量子相干。这篇小综述汇编了有关这三种同步类型的文献,为解决神经元组装中结合问题的生理机制提供了新的见解。
摘要 针对细菌核糖体的药物在现代医学和兽医实践中被广泛用于治疗细菌感染和防止抗生素耐药性的传播。然而,大多数针对核糖体的药物研究仅限于少数模型生物。因此,我们不知道在模型细菌中观察到的核糖体药物结合位点是否像目前所暗示的那样在细菌中高度保守。在本研究中,我们使用一个简单但强大的计算流程来解决这个问题,该流程过滤掉罕见的变异和测序错误,以识别整个细菌生命树中核糖体药物结合位点的保守变化。这使我们能够评估来自 8,809 种细菌物种的 82 个细菌核糖体药物结合残基的保守性。对于这些残基中的每一个,我们追踪其在 40 多亿年的细菌历史中的进化。与核糖体药物结合残基高度保守的普遍看法相反,我们发现细菌门类在药物结合位点存在广泛的差异。此外,我们还发现,大约 10% 的细菌物种带有核糖体 RNA (rRNA) 替换,而这种替换此前仅在耐药细菌的临床分离株中观察到。总体而言,我们的工作表明,我们传统上将核糖体分为细菌和真核生物类型的方法过于简单且具有误导性,因为它忽略了广泛的谱系特异性变异,这些变异使得某些细菌的药物结合位点与大肠杆菌的差异比大肠杆菌与人类的差异更大。这些发现将对核糖体靶向抗生素的谱系特异性使用产生许多影响,这些抗生素目前被视为细菌蛋白质合成的通用抑制剂。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月7日。 https://doi.org/10.1101/2025.02.05.636693 doi:Biorxiv Preprint
在大学大型部门的课程中安排时间表是一个非常困难的问题,并且经常通过以前的许多作品来解决,尽管结果部分是最佳的。这项工作通过使用遗传理论来解决时间表问题,以获取一个随机且完全最佳的时间表,并能够为拼贴画中的每个阶段生成多条解决时间表,从而实现了进化算法的原理。主要想法是在发现约束区域的同时自动生成课程时间表,以获得最佳且灵活的时间表,而不会通过更改可行的课程时间表而没有冗余。这项工作中的主要贡献是通过增加不同副本来生成最佳时间表时间表的灵活性来指示的,这是通过增加校园中每个阶段的最佳时间表并在需要时替换时间表的能力的可能性。本文中使用的进化算法(EA)是遗传算法(GA),它是基于进化人群的常见的多溶液元数据搜索,可以应用于解决时间表问题(例如时间表问题)的复杂组合问题。在这项工作中,所有意见:课程,教师和时间由一个阵列演示,以实现本地搜索,并通过使用启发式跨界跨越来确保基本条件不会被打破来实现时间表。这项工作的结果是一个灵活的调度系统,它显示了所有可能根据用户条件和需求创建的可能创建的时间表的多样性。简介:关键词:约束,进化算法(EA),健身函数,遗传算法(GA),时间表时间表(TTS)。
系统发育研究是理解植物物种的进化关系和历史轨迹的基石,阐明了生物多样性,生态适应和遗传遗产。这项研究通过结合形态学,分子和生物信息学方法的综合方法来研究植物分类群的进化历史。通过采用先进的系统发育重建技术,包括最大似然和贝叶斯推断,并利用全面的基因组数据集,这项研究发现了谱系差异和对地质时间尺度的物种形成事件。特别重点是确定保守和适应性特征的进化意义,从而阐明了推动植物多样化的遗传和环境因素。该研究还研究了水平基因转移,杂交和多倍体在塑造植物进化模式中的作用。通过映射关键遗传标记的分布,这项工作提供了有关历史气候变化,栖息地分裂和种间相互作用如何影响植物进化和适应性策略的见解。结果揭示了各种系统发育分支之间遗传差异和收敛的明确模式,突出了
作者:A Sentis · 2022 · 被引用 25 次 — 入侵路线上的化学防御进化:以异色瓢虫(瓢虫科:鞘翅目)为例。生态与进化,8,8344–...
本论文由 AFIT Scholar 的学生研究生作品免费提供给您,供您开放访问。它已被 AFIT Scholar 的授权管理员接受纳入论文和学位论文。如需更多信息,请联系 AFIT.ENWL.Repository@us.af.mil 。
细菌采用复杂的免疫机制来抵御噬菌体的攻击。最近的研究表明,这些免疫机制经常涉及对噬菌体感染的调节性细胞死亡。通过牺牲受感染的细胞,这种策略可以防止噬菌体在周围群体中传播。在这篇综述中,我们讨论了细菌防御中调节性细胞死亡的原理,并表明超过 70% 的测序原核生物采用这种策略作为其防御武器的一部分。我们强调了涉及调节性细胞死亡的防御系统的模块化,解释了噬菌体感应和细胞杀伤蛋白结构域之间的混洗如何主导它们的进化。其中一些防御系统是真核免疫关键组成部分的进化祖先,突出了它们在塑造整个生命之树上免疫系统进化轨迹方面的重要性。