AGRF 开展的所有临床工作均严格遵循 ISO15189 的要求。AGRF Ltd 已获得国家测试机构协会 (NATA) 在医学测试领域的认证(范围:体质遗传变异调查 - 诊断测试。遗传(种系)DNA/RNA 变化的全外显子组测序研究)。员工和分析流程遵循标准操作程序,该程序定义了责任和质量检查以达到报告的标准。在定期审查和内部审计期间,我们会监控合规性。工作由具有相关资格的人员监督,并在进行过程中和完成后进行检查,以确保其符合必要的 ISO15189 标准。
从碳氢化合物储层中生产H 2,展示了萨斯喀彻温省石油和天然气行业的新创新,并且在萨斯喀彻温省市场上没有等效。鉴于萨斯喀彻温省丰富的碳氢化合物赋予,Proton的技术有可能使萨斯喀彻温省成为主要的H 2生产商。这将通过向升级者,炼油厂,氨生产商,甲醇生产商以及作为发电的燃料提供国内氢,从而使萨斯喀彻温省现有行业受益。增加和稳定的H 2产量可能会导致石油和天然气,炼油,石化物和其他行业的增值加工,并且为低碳能源提供了能源过渡途径,以补充并利用萨斯喀彻温省现有的能源基础设施。它还提供了一种解决良好遗弃责任的机制,因为可以将成熟的油箱重新用于H 2生产。
摘要 — 我们研究了具有 TiN/Hf 0.5 Zr 0.5 O 2 /SiO 2 /Si (MFIS) 栅极结构的 FeFET 在耐久疲劳过程中的电荷捕获。我们提出了一种通过测量金属栅极和 Si 衬底中的电荷来实验提取存储器操作期间捕获电荷数量的方法。我们验证了在耐久疲劳过程中捕获电荷的数量会增加。这是第一次通过实验直接提取捕获电荷并验证其在耐久疲劳过程中会增加。此外,我们模拟了耐久疲劳过程中捕获电荷和铁电极化切换之间的相互作用。通过实验结果和模拟数据的一致性,我们证明了随着存储窗口的减小:1) Hf 0.5 Zr 0.5 O 2 的铁电特性没有降低。2) 栅极堆栈上带隙中的陷阱密度增加。3) 存储窗口减小的原因是编程操作后捕获电子增加,而与空穴捕获/去捕获无关。我们的工作有助于研究FeFET的电荷捕获行为和相关的耐久疲劳过程。
DNA提取在确定分子生物学的遗传问题中起着至关重要的作用。弗里德里希·米舍(Friedrich Miescher)于1869年在DNA上首次发现了粗糙的提取(Ali等人,2017年)。DNA提取的基本原理由几个步骤组成:(1)使用CTAB(Aboul-Maaty and Oraby and Oraby,2019)或SDS方法(El-Ashram等人,,2016年),而物理破坏,包括使用液氮隔离来研磨样品(Sahu等人,2012年)甚至酶促治疗,例如蛋白酶K(Sirkov,2016)和RNase(Tel- Zur等人。,1999; El-Ashram等。,2016年; Wang等。,2019年)可用于消除潜在的污染; (2)从细胞裂解物化合物中纯化DNA; (3)降水和DNA纯化(Dairawan and Shetty,2020年); (4)使用酒精和(5)含有低离子强度的溶液冲洗样品,通常使用Tris EDTA缓冲液溶解DNA并保护其免受降解。DNA提取方法可以使用
摘要:信息提取(IE)是自然语言处理(NLP)和计算机视觉的基本任务,旨在自动从非结构化数据源(例如文本,图像和视频)中提取结构化信息。本文对各种IE技术进行了全面的调查,重点介绍了指定的实体识别(NER),关系提取(RE)和意见分类。我们讨论了基于规则的,无监督,监督和深度学习方法,以突出其优势和局限性。此外,我们还探讨了IE在不同应用中的作用,包括学术文献数据库,商业智能,医疗保健,专利分析和客户服务。此外,我们研究了应用于图像和视频的IE方法,涵盖了视觉关系检测,光学特征识别(OCR)和自动视频摘要。本文还解决了诸如域适应,模棱两可,数据隐私和计算效率之类的挑战。最后,我们概述了未来的研究方向,强调了多模式IE的整合,深度学习的进步和实时处理。关键字:信息提取(IE),命名实体识别(NER),关系提取(RE),意见分类,基于特征的监督学习,IE深度学习,文本挖掘,光学角色识别(OCR)和自然语言处理(NLP)。I.简介信息提取(IE)是从非结构化或半结构化数据源(例如文本文档,图像和视频)中自动识别,提取和构造相关信息的过程。它涉及将原始数据转换为有意义的结构化表示形式的技术,从而促进了下游任务,例如知识图构造,问题答案和信息检索[1]。IE主要着重于提取特定类型的信息,包括:
它可以帮助您分析索赔或您可能想要查找的任何事件的地理空间分布。 Synapsis 可以从大量来源获取数据,包括其他数据库(包括社交媒体),包括 URL、共享照片等。 它创建自己的存储库,您可以随时使用语义搜索或关键字搜索来搜索存储库。
非侵入性收集的粪便样品是组织样品的DNA的替代来源,当动物直接采样时,可以在野生动植物的遗传研究中使用。尽管存在几种粪便DNA提取方法,但它们的功效在物种之间有所不同。先前从野生粪粪(Dugong Dugon)粪便中扩增线粒体DNA(mtDNA)标志物的尝试有限,核标记(微片齿)未能成功。这项研究旨在通过修改其他大型草食动物的研究中使用的方法来建立一种从粪便粪便中对MTDNA和核DNA(NDNA)进行采样的工具。首先,开发了一种简化的,具有成本效益的DNA提取方法,该方法能够从大量的粪便中扩增线粒体和核标记。粪便DNA使用新的“高体积 - cetyltrimethyl溴化铵 - 苯酚 - 氯仿 -
DNA 提取是分子生物学的一个基本过程,为从遗传研究到法医学和医学诊断等广泛应用奠定了基础。本综述旨在探索 DNA 提取技术的最新进展,重点介绍其原理、应用以及对各种生物样本的适用性。几十年来,传统的 DNA 提取方法(如苯酚-氯仿和乙醇沉淀)一直是 DNA 分离的支柱。然而,这些技术通常涉及危险化学品,而且可能很耗时。最近的进展集中在开发更安全、更快速、更有效的方法,重点是自动化和可扩展性。磁珠提取、硅胶柱纯化和专用试剂盒等创新大大简化了该过程,允许在临床和研究环境中进行高通量应用。除了这些技术改进之外,还出现了新的方法来应对特定挑战,例如