摘要:信息提取(IE)是自然语言处理(NLP)和计算机视觉的基本任务,旨在自动从非结构化数据源(例如文本,图像和视频)中提取结构化信息。本文对各种IE技术进行了全面的调查,重点介绍了指定的实体识别(NER),关系提取(RE)和意见分类。我们讨论了基于规则的,无监督,监督和深度学习方法,以突出其优势和局限性。此外,我们还探讨了IE在不同应用中的作用,包括学术文献数据库,商业智能,医疗保健,专利分析和客户服务。此外,我们研究了应用于图像和视频的IE方法,涵盖了视觉关系检测,光学特征识别(OCR)和自动视频摘要。本文还解决了诸如域适应,模棱两可,数据隐私和计算效率之类的挑战。最后,我们概述了未来的研究方向,强调了多模式IE的整合,深度学习的进步和实时处理。关键字:信息提取(IE),命名实体识别(NER),关系提取(RE),意见分类,基于特征的监督学习,IE深度学习,文本挖掘,光学角色识别(OCR)和自然语言处理(NLP)。I.简介信息提取(IE)是从非结构化或半结构化数据源(例如文本文档,图像和视频)中自动识别,提取和构造相关信息的过程。它涉及将原始数据转换为有意义的结构化表示形式的技术,从而促进了下游任务,例如知识图构造,问题答案和信息检索[1]。IE主要着重于提取特定类型的信息,包括:
主要关键词