通过球磨机械化学工艺从废贝壳中生产纳米晶和无定形碳酸钙 Chiara Marchini, 1 Carla Triunfo, 1,2 Nicolas Greggio, 3 Simona Fermani, 1 Devis Montroni, 1 Andrea Migliori, 4 Alessandro Gradone, 4 Stefano Goffredo, 2,3 Gabriele Maoloni, 5 Jaime Gómez Morales, 6 Helmut Cölfen, 7 和 Giuseppe Falini 1,* 1 博洛尼亚大学化学系“Giacomo Ciamician”,via F. Selmi 2, 40126 Bologna, 意大利,电子邮件:giuseppe.falini@unibo.it。2 Fano Marine Center,viale Adriatico 1/N 61032 Fano,意大利。3 博洛尼亚大学生物、地质与环境科学系,via F. Selmi 3, 40126 Bologna, Italy。4 微电子与微系统研究所 (IMM) - 博洛尼亚 CNR 分部,地址:P. Gobetti 101,邮编:40129,博洛尼亚,意大利。5 Finproject S.p.A.,工厂阿斯科利皮切诺,Via Enrico Mattei,1-Zona Ind.le Campolungo,3100 阿斯科利皮切诺,意大利。6 晶体学研究实验室,安达卢西亚地球科学研究所(CSIC-UGR),Avda Las Palmeras 4,18100 Armilla(格拉纳达),西班牙。7 康斯坦茨大学化学系、物理化学,Universitätsstrasse 10,Box 714,D-78457 康斯坦茨,德国。
闪烁噪声通常被视为本质上最普遍的噪音(参见,例如,参考文献。[1 - 4])。它也可以实现实验性访问并进行了广泛的研究。然而,实际上,射击噪声是用于量子传输和相关多体效应的基本表征的主要噪声。这是由于其相对小信号所涉及的射击噪声所涉及的挑战。具体而言,量子相干调节器中电子电导和射击测量的组合已被广泛用于提取有关量子传输的信息。例如,这种测量在分析分数量子霍尔效应[5,6],近距效应[7,8],自旋极化的量子传输[9-14],电子 - phonon相互作用[15-18]中起着核心作用,并在揭示了局部原子结构对原子质和分子的影响方面[19-14]电子射击噪声是信息的有用来源,因为它取决于传输通道的分布,这决定了Landauer形式主义框架中的量子传输[25]。对于ev≫k b t,[12,25] ssn¼2eif给出了射击噪声在传输通道上的功率谱密度的依赖性,其中f¼½piτiτið1 -τið1 -τi= p iτi是fano因子是fano因子,并且τi是i th ins of the th ins of the th频道的传输可能性( Boltzmann的因子;考虑电导G对传输通道的明显依赖性[25],g¼g0 piτi,其中g0¼2e 2 = h是电导量子(H,Planck的常数),射击噪声和电导可以提供有关量子轴承中传输通道分布的信息,并允许多个量子相互作用的探索量量的量化量。
细胞因子释放综合征(CRS)是重症患者死亡的重要原因之一[1,2],它是指由于过度激活或失控的免疫系统产生的极端免疫反应,该系统在病毒入侵时会释放出大量细胞因子。细胞因子是一类由免疫细胞分泌的小分子可溶性肽蛋白。临床研究发现,COVID-19重症监护患者的血清促炎细胞因子水平显着升高。白介素2(IL-2)是典型的细胞因子之一[3,4]。在发生严重CRS之前检测患者血清样品中与CRS相关的细胞因子并在炎症反应中进行介入是临床诊断的重要组成部分,这是正确预先确定的治疗指南的重要指南。由于血清中的细胞因子浓度低(PM范围),因此需要高敏性生物传感器才能检测。Terahertz(THZ)超材料生物传感器是一种无损,无标签,高度敏感的传感器,用于PM级细胞因子检测。但是,大多数典型的超材料是金属基阵列结构,而设备的低Q因子限制了由于高金属损耗而引起的传感器的灵敏度。与金属结构的超材料相比,介电的超材料的损失较低,Q因子较高,并且可以用作THZ超材料生物传感器,以显着提高传感器的灵敏度和检测限。Yang创造性地报道了中的基于硅的双间隙拆分结构Yang创造性地报道了考虑了FANO共振,以进一步改善设备的Q因子,例如,基于硅纳米条[5],不对称 - 切割线超材料[6]的介电FANO共振结构[6],以及连续的全dielectric Boundic boundic boundic body态[7]。
在高压下,最近发现的高温超导体LA 3 ni 2 O 7引起了强烈的辩论。关键争议涉及层间与内部配对场景,以及杂交在建立超导性方面起关键作用。但是,由于在高压下采用最新技术的限制,实验性澄清很困难。在这里,我们建议准粒子隧道和Andreev反射可以提供一种可行的方法来区分不同的配对场景。我们预测,D X 2 -2 -Y 2金属带与强烈重新归一化的Flat D Z 2 Quasiparticle带之间的杂交可以诱导不对称的Fano线形状。在超导状态下,我们表明,对于与小型层间跳跃的超导性,应极大地抑制Andreev反射。我们提出了未来的实验来检查这些预测,并有助于阐明超导LA 3 Ni 2 O 7和其他多层镍超导体的基本物理。
控制集成光子电路中组件的控制对于实现可编程功能至关重要。等离子设备的操作带宽通常一旦制造就无法调整,尤其是在可见的方向上。在这里,我们演示了可见式示例的这种设备的电气控制,以进行外径光学传输(EOT)。(i)EOT设备的操作频率可以通过通过纳米线施加的偏置电压调节。(ii)或在给定频率下,可以连续调整EOT信号(标准化为入射场),例如10-4至0之间。4。这对应于3个幅度调制深度。我们利用嵌入到纳米骨中的量子发射极(QE)引起的FANO共振。外部偏置电压调音量量子量量子的共振。我们还讨论了表面等离子体极化子的寿命延伸,以响应超短脉冲。我们提出的方法提供了对EOT信号的主动电子控制,这使其成为集成光子电路中的可行且紧凑的元素,用于生物感应,高分辨率成像和分子光谱应用。
摘要。作者先前利用具有关系的自由群 G 子群的陪集结构找到了一种通用量子计算模型。G 中指数为 d 的有效子群 H 导致 d 维希尔伯特空间中的“魔法”状态 | ψ ⟩,该状态编码最小信息完备量子测量 (MIC),可能带有有限的“上下文”几何。在本研究中,我们选择 G 作为奇异 4 流形 V 的基本群 π 1 (V),更准确地说是“小奇异”(时空) R 4 (即同胚和等距,但不与欧几里得 R 4 微分同胚)。我们所选的例子归功于 S. Akbulut 和 RE Gompf,它具有两个显著的特性:(a) 它显示了标准上下文几何的存在,例如法诺平面(索引 7 处)、梅尔明五角星(索引 10 处)、两量子比特交换图像 GQ (2 , 2)(索引 15 处)以及组合格拉斯曼流形 Gr(2 , 8)(索引 28 处);(b) 它允许将 MIC 测量解释为源自此类奇异的(时空) R 4 。我们将拓扑量子计算与奇异时空联系起来的新图像也旨在成为一种“量子引力”方法。
循环神经网络用于预测金融,气候,语言和许多其他领域的时间序列。储层计算机是一种特别容易训练的复发性神经网络形式。最近,引入了一台“下一代”储层计算机,其中内存跟踪仅涉及有限数量的先前符号。我们探讨了这个有趣的建议中有限记忆痕迹的固有局限性。fano的不平等现象的下限表明,在大型概率状态机器产生的高度非马克维亚过程中,具有相当长的内存轨迹的下一代储层计算机具有相当长的错误概率,其误差概率至少比最小可行的误差概率高约60%,以预测下一步观察。更普遍地,看来流行的复发性神经网络远远远远远远没有预测这种复杂的过程。这些结果突出了新一代优化的复发神经网络体系结构的需求。除了这一发现之外,我们为随机生成但复杂的过程提供了量度集合的结果。一个结论是,大型的概率状态机器(特别是大型机器)是为地面流动的复发性神经网络体系结构产生具有挑战性和结构上悬而未决的刺激的关键。
由于胶片摄像头被替换为数码相机,因此追求小像素大小进入亚微米尺度以满足高分辨率成像的需求是一个主要趋势。1,2图像传感器的像素大小的收缩(ISS)引发了严重的信噪问题,并带来了常规光学组件的挑战。3最近通过应用各种纳米光学效应,包括超普通变速器(EOT),4个金属纳米antennans,5 Fano共振,6个MIE共振,7和指导模式共振(GMR)来设计结构性色过滤器。8与基于材料吸收的常规染料颜色过滤器相比,结构颜色技术通过人工微/纳米结构实现光谱滤波,具有互补金属的优势 - 氧化物 - 氧化物 - 轴导剂(CMOS)过程兼容性,稳定性,稳定性和抑制空间颜色crosstalk。9尽管已经进行了彻底的研究以探索基本物理学,但10种高质量的材料11并优化了结构色技术的制造和集成方法12,但没有一个可以在光传输效率(〜90%)和颜色纯度方面击败染料色过滤器。13此外,大多数结构颜色过滤器都是
G Caporti, S Bonacquisti, L Abis, I Aloisi, F Attorre, G Bacaro, G Balletto, and Banfi, and Barni, F Bartoli, and Bazzato, M Beccaccioli, R Braglia, F Bretzel, but Brighetti, G Brundu, M Burnelli, C Callfapietra, Ve Camburia, G Caneva, in Canini, M Casti, M Celesti-Grapow, and Cicinelli, L Cipriani, S Citterio, G Concu, in Coppi, and Corona, S del Duca, and of Vico, and of Gristina, G Domina, L Faino, and Fano, S Fares, and Farris, S Farris, M Fornaciari, M Gaglio, G Galasso, M Galletti, Ml Gargano, R Gentili, C Giannotta, R Guarino, R Guarino, Iaquinta,Giriti,Lallai,Lallai和Lattanzi,S Manes,M Marignani,F Marinangeli,M Mariotti,M Mariotti,F Mascia,P Mazzola,P Mazzola,G Meloni,P Michelozzi,P Michelozzi,在Miraglia,Miraglia,C Montagnani,l Munduli and nit和FI Landi,R, Palumbo,S Palumbo,L Parrotta,S Pasta,K Perini,L Poldini,postiglione,囚犯,C Proietti,FM Raimondo,Ranfa,El Redi,M Reverberi和Roccotiello,Roccotiello ,在Sordo, Tartaglia,Tilia,C Toffolo和Toselli,Travaglini,F Ventura,G Venturella,F Vincenzi&C BlasiG Caporti, S Bonacquisti, L Abis, I Aloisi, F Attorre, G Bacaro, G Balletto, and Banfi, and Barni, F Bartoli, and Bazzato, M Beccaccioli, R Braglia, F Bretzel, but Brighetti, G Brundu, M Burnelli, C Callfapietra, Ve Camburia, G Caneva, in Canini, M Casti, M Celesti-Grapow, and Cicinelli, L Cipriani, S Citterio, G Concu, in Coppi, and Corona, S del Duca, and of Vico, and of Gristina, G Domina, L Faino, and Fano, S Fares, and Farris, S Farris, M Fornaciari, M Gaglio, G Galasso, M Galletti, Ml Gargano, R Gentili, C Giannotta, R Guarino, R Guarino, Iaquinta,Giriti,Lallai,Lallai和Lattanzi,S Manes,M Marignani,F Marinangeli,M Mariotti,M Mariotti,F Mascia,P Mazzola,P Mazzola,G Meloni,P Michelozzi,P Michelozzi,在Miraglia,Miraglia,C Montagnani,l Munduli and nit和FI Landi,R, Palumbo,S Palumbo,L Parrotta,S Pasta,K Perini,L Poldini,postiglione,囚犯,C Proietti,FM Raimondo,Ranfa,El Redi,M Reverberi和Roccotiello,Roccotiello ,在Sordo, Tartaglia,Tilia,C Toffolo和Toselli,Travaglini,F Ventura,G Venturella,F Vincenzi&C Blasi