该设备结合了可容纳软件的接收器,发射器和基带信号处理器。接收器部分提供了灵活的高带宽类似物到数字转换以及硬件加速的FFT处理单元。发射器启用波形合成和数字到分析转换,并同步接收器和光学痛子系统。基带信号处理器是一个功能强大的四核Tensilica®软件定义的,用于点云的信号处理单元。
人类的情绪状态可以自然转变,并可通过面部表情、声音或身体动作识别,这些都受所接受的刺激影响。然而,即使经历了喜悦、悲伤或其他感觉,每个人也并非都能表达情绪。从生物医学角度来看,情绪会影响脑电波活动,因为持续运作的脑细胞通过电脉冲进行交流。因此,脑电图 (EEG) 用于捕获来自脑信号的输入、研究脉冲并确定人类情绪。检查通常包括观察一个人对给定刺激的反应,但即时结果尚无定论。在本研究中,相关分类为正常、专注、悲伤和震惊。通过使用名为 Neurosky Mindwave 的单通道脑电图记录了 50 名受试者的原始脑电波数据。同时,在通过听音乐、看视频或阅读书籍刺激候选人的思维的同时进行评估。采用快速傅立叶变换 (FFT) 方法进行特征提取,并采用 K-最近邻 (K-NN) 对脑脉冲进行分类。参数 k 的值为 15,平均分类准确率为 83.33%,而专注情绪状态的最高准确率为 93.33%。Neurosky Mindwave 与 FFT 和 KNN 技术相结合,是潜在的分析解决方案,有助于增强对人类情绪状况的识别。
信号:HR,OX和它们之间的归一化差异。从这三个时间信号中的每个信号中,时间(平均值和标准偏差)和频率域的特征(第一和第二谐波的特征,所有谐波的总和和对归一化快速傅立叶型[FFT]信号的正常成分分析的六个第一个索引[PCA]的六个索引。因此,获得了每个阶段的13个特征(每次评估的总计26个特征)。标记和要检测到的事件的定义
摘要:我们使用具有瑞利摩擦的双层线性动力学模型研究了重力波 (GW)、风电场形状和风向对风电场效率和相互作用的影响。使用了五个综合诊断量:总风差、涡度一阶矩、涡轮机功、扰动动能和垂直能量通量。涡轮机阻力对大气所做的功与扰动动能的耗散相平衡。提出了一种基于“涡轮机功”的风电场效率新定义。虽然重力波不会改变总风差或涡度模式,但它们会改变风差的空间模式,通常会降低风电场的效率。重力波会减缓逆风向的风速,并减少对附近下游风电场的尾流影响。重力波还会将部分扰动能量向上传播到高层大气中。我们将这些想法应用到新英格兰海岸拟建的 45 平方公里(15 平方公里)风能区。这些风力发电场彼此接近,因此风力发电机在风力发电场互动中发挥着重要作用,尤其是在冬季西北风吹拂时。控制方程是直接求解的,并使用快速傅里叶变换 (FFT) 求解。线性 FFT 模型的计算速度表明,它未来可用于优化这些风力发电场和其他风力发电场的设计和日常运营。
标准效率审查报告和过渡计划 2021 年 5 月 3 日 执行摘要 标准效率审查 (SER) 是一个多阶段项目,于 2017 年启动,基于 NERC 成员代表委员会 (MRC) 的意见,也是 ERO 企业长期战略的重点领域,旨在捕捉有效性、效率和持续改进机会 1 。迄今为止,第 1 阶段的一部分已经完成,FERC 批准停用 18 项标准要求,而其他停用建议尚待解决。SER 项目的其他阶段包括建议的议事规则 (ROP) 和对各种标准开发资源的增强。这些建议正在等待实施,如下所述。背景 在 SER 之前就存在效率和流程改进工作,包括标准流程输入小组(SPIG,2012)和项目 2013-02 第 81 段。2012 年 2 月至 5 月期间,NERC MRC 组织的 SPIG 制定并提出了五项建议,这些建议于 2012 年 5 月 9 日获得 NERC 理事会的批准2。这些建议旨在改进 NERC 制定可靠性标准的方式以及其他旨在提高标准制定的优先级、产品和流程的解决方案。这些建议侧重于四个方面:明确可靠性目标、技术参数、范围和标准项目的相对优先级;起草过程(制定标准的具体技术内容);标准项目管理和工作流程;正式投票和评论。在 2012 年 3 月的 FERC 命令中,委员会有条件地接受了 NERC 的“查找、修复、跟踪和报告”(“FFT”)计划。 FFT 流程除其他外,还为 NERC 和区域实体提供了灵活性,通过 FFT 信息文件(而不是发布和提交罚款通知)来处理低风险的违规行为。此外,委员会提出了修改或取消可靠性标准要求的可能性,这些要求“对大容量电力系统的可靠性几乎没有保护作用,或者可能是多余的”。 (北美电力可靠性公司,138 FERC ¶ 61,193,第 81 页,2012 年 3 月 15 日)这一初始机会通常被称为“第 81 段”或“P81”。作为回应,NERC 启动了 2013-02 项目第 81 段 3(P81)。该项目的目的是淘汰或修改 FERC 批准的可靠性标准要求,正如 FERC 指出的那样,这些要求对大容量电力系统 (BES) 的可靠运行几乎没有保护作用,是多余的或不必要的,或者淘汰或
图 5.7:输出电压 V o 中的 IHD 评估 .............................................................. 124 图 5.8:LCLC 滤波器电容器 RMS 电流的评估 ........................................................ 126 图 5.9:LCLC 滤波器简化 ...................................................................................... 127 图 5.10:电压降与电感 ............................................................................................. 127 图 5.11:LCLC 滤波器谐振峰的阻尼 ...................................................................... 129 图 5.12:LCLC 滤波器的设计空间 ............................................................................. 130 图 5.13:用于 LCLC 滤波器设计验证的 SABER 模拟波形 ............................................. 133 图 5.14:具有并联 RC 阻尼的每相双交错 LCLC 滤波器 ............................................. 134 图 5.15:V PWM1 和 V PWM2 中的高频电压谐波 ............................................................. 136 图 5.16:跨L d ................................................................... 137 图 5.17:交错式 LCLC 滤波器的电感重量与电感 ........................................ 139 图 5.18:交错式 LCLC 滤波器的电感损耗与电感 ........................................ 139 图 5.19:耦合电感设计流程 ............................................................................. 141 图 5.20:交错式 LCLC 滤波器的 L d 与 L ............................................................. 143 图 5.21:交错式 LCLC 滤波器的 CI 与 L 的重量和损耗 ........................................ 143 图 5.22:交错式 LCLC 滤波器电容器 RMS 电流的评估 ........................................ 147 图 5.23:交错式 LCLC 滤波器电压降与电感的评估 ........................................ 148 图 5.24:交错式 LCLC 滤波器的设计空间 ........................................................ 149 图5.25:交错式 LCLC 滤波器的 SABER 仿真波形 ...................................................................... 151 图 5.26:滤波器重量比较 .............................................................................................. 153 图 6.1:原型系统的转换器拓扑 ...................................................................................... 156 图 6.2:电感器构造的关键阶段 ...................................................................................... 161 图 6.3:L 1 和 L 2 的测量电感 ...................................................................................... 162 图 6.4:绕组布置和构造的耦合电感 ............................................................................. 163 图 6.5:磁性元件重量比较 ............................................................................................. 165 图 6.6:转换器的热模型 ............................................................................................. 166 图 6.7:转换器的 3D 计算机模型 ................................................................................ 168 图 6.8:原型转换器 ................................................................................................ 169 图 6.9:原型转换器的详细 SABER 仿真模型 ...................................................................................... 170 图 6.10:PWM 波形比较,V PWM1 和 V PWM2 ........................................................................ 172 图 6.11:不同杂散电感值下的 V PWM1 ...................................................................................... 173 图 6.12:V PWM1 和 V PWM2 的 FFT 比较 ............................................................................. 175 图 6.13:电流比较,I 1 和 I 2 ............................................................................................. 176 图 6.14:I 1 和 I 2 的电流过冲比较 ............................................................................................. 176 图 6.15:I 1 和 I 2 的 FFT 比较 ............................................................................................. 178 图 6.16:V d 和 I d 的比较 ............................................................................................. 179 图 6.17:V d 和 I d 的特写比较 ............................................................................................. 179 图6.18:V d 和 I d 的 FFT 比较 ...................................................................................... 181 图 6.19:V 1 、IL 和 IC 的比较 ........................................................................................ 183 图 6.20:V o 和 I o 的比较 ............................................................................................. 185 图 6.21:V o 和 I o 的 FFT 比较 ...................................................................................... 186 图 6.22:测量值和计算值的转换器损耗比较 ............................................................. 187 图 6.23:转换器重量细目 ............................................................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190
• Ultraprobe 15,000 触摸数字枪式装置 这款先进的超声波仪器可以执行机载频谱分析、记录测试设备的声音、测量和记录温度、使用闪光灯拍照、存储和管理数据。Ultraprobe 15,000 采用触摸屏技术。这一独特功能使用图标轻松控制和操作 Ultraprobe 的任何显示屏。触摸屏幕可让您查看分贝级别、温度、控制灵敏度、更改频率、查看 FFT 以及记录声音和图像。
• Ultraprobe 15,000 触摸数字枪式装置 这款先进的超声波仪器可以执行机载频谱分析、记录测试设备的声音、测量和记录温度、使用闪光灯拍照、存储和管理数据。Ultraprobe 15,000 采用触摸屏技术。这一独特功能使用图标轻松控制和操作 Ultraprobe 的任何显示屏。触摸屏幕可让您查看分贝级别、温度、控制灵敏度、更改频率、查看 FFT 以及记录声音和图像。
摘要.[目的]中风患者无法自行活动,必须进行康复训练,让神经系统触发并恢复功能。传统做法是使用电极帽提取脑波特征,并与辅助设备相结合。但存在电极帽不易佩戴、电位识别不佳的问题,且不同的提取方法会影响脑机接口(BCI)的准确性,仍有改进空间。[对象与方法]本实验使用的脑波耳机无需导电凝胶即可获得良好的脑电图进行神经诱导并驱动上肢康复机器人。接下来,邀请8名中风患者和200名正常参与者进行为期4周的康复训练。使用快速傅里叶变换(FFT)、幅值平方相干性(MSC)特征提取方法和诱导闪烁频率的五种机器学习技术来确定训练的有效性。 [结果] 结果表明最佳稳态视觉诱发闪烁频率为 6 Hz, FFT 的识别率比 MSC 方法提高约 5.2%; 对不同的特征提取方法采用优化模型可使识别率提高 1.3%~9.1%。[结论] 基于 Fugl-Meyer 评估 (FMA)、改良 Ashworth 量表 (MAS) 指数改进及功能性磁共振成像 (fMRI) 的图像显示大脑运动感觉区域已成为集中激活现象。 除了强化特征提取方法外, 还让肘部动作有明显的恢复效果。关键词: 脑机接口, 稳态视觉诱发电位, 特征提取
• Ultraprobe 15,000 触摸数字手枪单元 这款先进的超声波仪器可以执行机载频谱分析、记录测试设备的声音、测量和记录温度、使用闪光灯拍照、存储和管理数据。Ultraprobe 15,000 采用触摸屏技术。此独特功能使用图标轻松控制和操作 Ultraprobe 的任何显示屏。触摸屏幕可让您查看分贝级别、温度、控制灵敏度、更改频率、查看 FFT 以及记录声音和图像。