•在沥青生产中使用废料的增加(说唱,玻璃,废物,塑料,磨碎橡胶,碳粉等)•降低生产和压实温度(WMA技术)•减少干燥骨料的能量(覆盖储存量,绝缘,隔热,使用绿色燃料,溶液等)•使用绿色燃料和较高的碳纤维材料,例如使用较低的碳水化合物•使用较低的碳水化合物•使用较低的cody prodbord•hyd-cody bodiber of figner infim infim in coby of coby offor infim infim•使用水分般的粘贴式粘贴式粘贴式粘贴式粘贴式胶水材料•粘合剂•使用回收和回收解决方案,例如基础处理和稳定
本文所包含的信息符合我们的知识,截至发表之日起,准确和可靠。Borealis不扩展任何保证,也不对本文包含的信息的准确性或完整性作出任何陈述(尤其是第三方未经Borealis验证的任何数据和计算),并且对其使用后果或任何错误的后果不承担任何责任。客户有责任检查和测试我们的产品,以使自己满足于产品对客户的特殊目的的适用性。客户还负责适当,安全和合法的使用,处理和处理我们的产品。此处的任何内容均不得构成任何保证(明示或暗示的适销性,适合特定目的的适用性,符合绩效指标,符合样本或模型,不侵权或其他方式),也没有任何法律或专利的保护。在与第三方材料结合使用的产品中使用的产品,客户有责任获取与第三方材料有关的所有必要信息,并确保与这些材料一起使用时,适用于客户的特殊目的。与其他材料结合使用北方产品,不承担任何责任。本文包含的信息与我们的产品仅与任何第三方材料结合使用时,仅与我们的产品有关。
过量的胆固醇蓄积会诱导泡沫细胞的积聚,最终加速动脉粥样硬化的进展。历史上,巨噬细胞衍生的泡沫细胞因其在斑块形成中的核心作用而受到关注,这一机制受到了谱系追踪和单细胞测序 (sc-seq) 的联合研究的挑战。越来越多的研究揭示了血管平滑肌细胞 (VSMC) 如何增殖并迁移至血管内膜并聚集,然后在过剩脂质的诱导下转化为泡沫细胞,最终占小鼠和人类斑块中总泡沫细胞的 30% 至 70%。因此,VSMC 衍生的泡沫细胞的机制受到越来越多的关注。本综述旨在总结动脉粥样硬化中氧化低密度脂蛋白 (ox-LDL) 诱导 VSMC 转化为泡沫细胞的机制。
摘要。如今,由于其在机械和热性能方面的许多优势,聚氨酯(PU)泡沫在许多应用中成功替换了各种工程材料。在各种应用中,必须根据用户要求将PU FOAM形成各种三维模型,通过使用CAM软件和CNC铣削加工来制造产品。因此,根据材料和切割工具的性质和特征,在铣削加工过程中选择切割参数是必不可少的,并且显着影响了产生的PU泡沫产品的几何结构和表面粗糙度。根据对本文的审查,必须适当考虑几个加工参数,包括主轴旋转速度,切割深度,切割工具选择和进料速度。振动将随着主轴旋转速度的增加而增加,这带来了切割工具,但会带来更好的表面质量。可以通过选择适当的切割深度并产生低表面粗糙度值来实现连续的芯片形成。选择与材料特征相匹配的合适切割工具和几何形状可以减少加工过程中物质损害的风险,从而降低表面粗糙度值。最后,较低的切割率将使表面粗糙度最小化,但会增加尖端磨损的风险。
• 50 毫米至 12 米的卷筒片材或切割片材 • 75 毫米至 6 米的管材 • 最大开口为 6 米的扁平和角撑袋 • 贴体、拉伸和收缩膜 • 弹性遮蔽袋和遮蔽套 • 束口袋和气泡膜 • 普通或彩色薄膜,印有您的公司徽标。
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
随着柔性电子产品和绿色汽车的快速普及,合理设计和轻松构建具有优异机械性能和高电化学性能的定制功能材料至关重要。在此,通过利用数字光处理(DLP)和化学气相沉积(CVD)两种现代工业技术,展示了一种独特的3D空心石墨泡沫(HGF),其表现出周期性的多孔结构和坚固的机械性能。有限元分析(FEA)结果证实,合理设计的螺旋状多孔结构提供了均匀的应力区域并减轻了由应力集中引起的潜在结构故障。典型的HGF在48.2 mg cm -3的低密度下可以显示出3.18 MPa的高杨氏模量。多孔 HGF 进一步被活性 MnO 2 材料覆盖,质量负载高达 28.2 mg cm -2 (141 mg cm -3 ),MnO 2 /HGF 电极仍可实现令人满意的 260 F g -1 比电容,对应的面积电容为 7.35 F cm -2 ,体积电容为 36.75 F cm -3 。此外,组装的准固态非对称超级电容器还表现出优异的机械性能和电化学性能。
锂离子电池由于其高能量密度、优异的循环寿命和实惠的价格,已被广泛应用于消费产品和电动汽车。 [1,2] 然而,尽管锂离子电池中使用传统的石墨负极在循环过程中具有出色的稳定性,但由于其固有的低理论容量(372 mAh g 1 ),其循环容量受到限制。 因此,最近的研究主要集中在开发锂离子电池的高容量电极上,以满足当前消费者的需求。 因此,已经提出了许多新型负极材料来实现更好的循环性能。 特别是,过渡金属氧化物(例如Ni,Co,Fe等)作为用于锂离子电池的高容量负极而受到了广泛的关注,[3] 其中NiO因其高的理论容量(718 mAh g 1 )、可及性和价格实惠而受到特别的关注。然而,过渡金属氧化物仍有许多需要克服的限制,例如电子电导率低、初始库仑效率差、充电/放电过程中体积变化大,所有这些最终都会导致循环不稳定和能量密度损失。为了克服这些问题,可以使用多孔或纳米级过渡金属氧化物活性材料作为 LIB 阳极,以提供更大的表面积、充电/放电过程中的更低体积变化和更短的扩散路径。[4,5] 到目前为止,已经使用多种方法合成多孔纳米材料,包括气相沉积、[6] 脱合金、[7] 3D 打印、[8]
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。