高血糖通过 PI3Kγ 依赖的缺陷自噬加剧平滑肌泡沫细胞的形成 Labrana H 1* ., Wahart A 1* ., Cormier K 1 ., Solinhac R 1 ., Swiader A 1 ., Mentouri I 1 ., Smirnova N 1 ., Malet N 1 ., Gayral S 1 ., Ramel D 1 ., Auge N 1 **., Laffargue M 1 ** 1 I2MC,法国国家健康与医学研究中心 (INSERM) U1297,法国 *,** 同等贡献
摘要本文研究了使用石墨烯血小板(GPL)增强泡沫核心和磁性电动弹性(MEE)表面层使用正弦曲线上阶剪切剪切剪切剪切剪切剪切理论(Shssdt)的智能砂纳米板中弯曲,纵向和剪切波的传播。建议的纳米板由位于MEE表面层之间的Ti -6al -4V泡沫芯组成。MEE表面层是由钴铁岩(COFE 2 O 4)和丁烷(Batio 3)的体积组合组合的。泡沫芯和MEE面部层的材料特征取决于温度。在这项研究中,考虑了三种不同的核心类型:金属固体核(类型I),GPL增强固体核心(类型-II)和GPL-辅助泡沫核心(III型)以及三个不同的泡沫分布:对称性foam I(S-FOAM I(S-FOAM I(S-FOAM I),Sy-FOAM I(S-FOAM I),Symmetrical FOAM II(S-FOAM II(S-FOAM II II)和UN-FOAM II(UN-FOAM)。使用纳米板的运动方程并确定了系统的响应,汉密尔顿的原理和Navier的方法被采用。通过分析计算研究了各种参数,例如波数,非局部参数,泡沫空隙系数和分布模式,GPL体积分数,GPL体积分数以及热,电和磁性电荷对相位速度和波频频率进行了分析计算研究。研究的发现表明,夹层纳米板的3-D波传播特性可以对外部载荷和材料参数进行大量修改或调整。因此,预计所提出的三明治结构将为雷达隐形应用提供重要贡献,保护纳米电机力学设备免受高频和温度环境的影响,智能纳米电机力学传感器的进步,其特征在于轻质和温度灵敏度以及可穿戴设备的应用。
摘要:高级孔隙形态 (APM) 泡沫元件几乎是球形的泡沫元件,具有坚固的外壳和多孔的内部结构,主要用于压缩载荷应用。为了确定内部结构的变形及其在压缩过程中的变化与其机械响应之间的关系,进行了原位时间分辨 X 射线计算机微断层扫描实验,其中在加载过程中对 APM 泡沫元件进行 3D 扫描。当机械响应与样品的内部变形相关时,同时施加机械载荷和射线成像使人们对 APM 泡沫样品的变形行为有了新的认识。研究发现,在出现第一个剪切带之前,APM 元件的刚度达到最高。在此之后,APM 元件的刚度降低,直到内部孔壁之间第一次自接触为止,从而使样品刚度朝向致密化区域增加。
这篇文章中的资助信息被错误地理解为“本研究工作由机构基金项目资助,资助编号为 (IFPIP:542-135-1443)。作者非常感谢沙特阿拉伯教育部和阿卜杜勒阿齐兹国王大学 (DSR,吉达,沙特阿拉伯) 提供的技术和资金支持”。
聚二甲基硅氧烷 (PDMS) 泡沫作为下一代聚合物泡沫材料之一,表面粘附性差且功能有限,极大地限制了其潜在应用。制备具有多种功能的先进 PDMS 泡沫材料仍然是一项关键挑战。在这项研究中,报道了前所未有的自粘性 PDMS 泡沫材料,该材料具有蠕虫状粗糙结构和反应性基团,用于通过简便的硅胶发泡和浸涂策略以及随后的硅烷表面改性来制造用 MXene/纤维素纳米纤维 (MXene/CNF) 互连网络装饰的多功能 PDMS 泡沫纳米复合材料。有趣的是,这种自粘性 PDMS 泡沫与混合 MXene/CNF 纳米涂层产生强的界面粘附力。因此,优化的PDMS泡沫纳米复合材料具有优异的表面超疏水性(水接触角≈159o)、可调的电导率(10-8至10Sm-1)、在宽温度范围(-20至200oC)和复杂环境(酸、钠和碱条件)中稳定的压缩循环可靠性、出色的阻燃性(LOI值> 27%且产烟率低)、良好的隔热性能和在各种应力模式和复杂环境条件下可靠的应变感应。它为合理设计和开发具有多功能性的先进PDMS泡沫纳米复合材料提供了新途径,可用于智能医疗监控和防火隔热等各种有前景的应用。
4.5.5 发泡性。泡沫溶液的膨胀和排水应使用 NFPA 412 的方法 A 进行测量。泡沫应通过 2 加仑/分钟 (gal/min) 的抽吸喷嘴产生(见 6.9)。在泡沫样品采集过程中,喷嘴入口压力应保持在 100 磅/平方英寸 (lb/in²) 的表压下,泡沫溶液温度应保持在 23±5.0 °C。喷嘴应保持在臀部高度,并从 4 到 6 英尺的距离指向篮板。
随着世界快速发展的经济,天然气,石油和煤炭等不可再生的自然资源的征收日益增加。这些不可再生的资源是环境污染的主要来源,它对减少污染和环境保护的需求构成压力。为了克服这些问题,搜索者正在专注于未来的替代性清洁能源,低成本和环保资源[1 E 7]。氢是能量载体的合适候选者之一,通过光催化和电化学水分裂方法对此进行了广泛研究[8 E 13]。与大规模生产的光催化相比,电解具有较高的效率[14 E 17]。elec- trocatalysts在电解过程中起着至关重要的作用,在电解过程中,由于阴极氢进化反应(HER)和氧作为阳极氧进化反应(OER)而产生氢。到目前为止,她的铂(PT)和OER的氧化偶氮被认为是最好的电催化剂,但稀缺性和高成本限制了它们的大规模生产[18,19]。氢被认为是在不久的将来可以将能量从化学能量转化为燃料电池中的电能的主要来源。用于氢生产,通常使用碱性电解方法。在碱性水电中,强大的碱性培养基被用作电解质,而hy- droxide阴离子则通过这种强的碱性培养基传递到阳极表面,它们会在其中失去电子。像镍之类的过渡金属是贵族金属的良好替代品,因为低成本,高催化性能和地球丰富的材料。应在细胞中使用具有高离子迁移率的电解质,以扩大有合并性。氢氧化钾(KOH)通常用于碱性水电解中,以避免酸性电解质发生的腐蚀问题[20,21]。通过电催化水分裂方法生产氢非常昂贵,而且碳氢化合物的产生中有96%的氢生产[22]。研究人员正在专注于开发具有较高电催化效率且对她的较低电势的新材料的新策略[23]。在电化学中,她是一个广泛调查的行动。为了增强反应动力学,阴极材料必须具有高催化效率,低成本,高表面积和高化学稳定性的特殊组合[24]。除了这些特征外,催化剂的受控形态和表面结构是
金属泡沫因其独特的特性被认为是最新的吸声材料之一。通过确定吸声材料的结构特性来预测其声学行为是一种最有效的方法。不幸的是,直接测量这些参数通常很困难。目前,已经有声学模型显示吸声体形貌和吸声系数(SAC)之间的关系。通过优化对SAC有效的参数,可以获得每个频率下的最大SAC。在本研究中,使用基准测试方法,在MATLAB编码软件中验证了Lu提出的模型。然后,使用局部搜索算法(LSA)对金属泡沫形貌参数进行优化。优化参数有三个因素,包括孔隙率、孔径和金属泡沫孔开口尺寸。优化应用于500至8000 Hz的宽频带。预测值与Lu模型得到的基准数据一致。在 500 至 800 Hz 的频率范围内,孔隙率为 50% 至 95%,孔径为 0.09 至 4.55 mm,孔开口尺寸为 0.06 至 0.4 mm,可获得最高的 SAC。在大多数频率下,孔开口尺寸的最佳量为 0.1 mm,可获得最高的 SAC。结论是,所提出的 LSA 方法可以根据 Lu 模型优化影响 SAC 的参数。所提出的方法可以作为优化金属泡沫微观结构参数以提高任何频率下的 SAC 的可靠指导,并可用于制造优化的金属泡沫。
在压缩负载下研究了基于陶瓷泡沫和ALSI10MG轻质铝合金的互穿金属陶瓷复合材料。陶瓷预成型是通过机械搅拌,干燥和最终烧结而产生的。它的相对密度约为25%,并通过铝合金通过气压浸润渗透。压缩负荷期间的损伤过程以及对裂纹发育的理解是这项研究的重点,并通过补充2D和3D表征方法获得。因此,使用通用测试机,数字图像相关性和显微镜设置的2D表面原位研究设置。进行3D研究,开发并进行了具有原位X射线计算机断层扫描的压缩测试,以了解材料裂纹的生长和裂纹的传播,以及其互穿金属 - 陶瓷复合材料内的失效机制。材料在平行于载荷方向的陶瓷相中显示裂纹起始。随后裂纹簇的形成随后发生了故障机理的变化,这是由于剪切应力支配的失败,其宏观裂纹在45°方向上的宏观裂缝在载荷方向上发生了变化。可以确定复合材料的良好失败。2D和3D调查方法的组合可以深入了解互穿复合材料的失败行为,从而有助于理解超出当前知识状态的失败机制。
根据 2021 财年 NDAA 第 318 条,国防部各部门必须报告任何 AFFF 使用情况,或超过 10 加仑 AFFF 浓缩液或 300 加仑混合泡沫的泄漏情况。在 24 小时内,应通过适当的指挥系统将通知转发给国防部环境和能源复原力副助理部长办公室 (ODASD(E&ER)),电子邮件为 osd.pentagon.ousd-a-s.mbx.asds-environment@mail.mil。本政策及其报告要求实施了 2021 财年 NDAA 要求,并取代了之前的 ASD(S) 备忘录“水成膜泡沫使用和泄漏报告”(日期为 2020 年 1 月 13 日)。常规维护活动 1、码头船舶测试以及完全控制和处置 AFFF 的培训和测试活动不构成根据本政策需要报告的使用或泄漏。本报告必须使用附件 1 中的模板(24 小时 AFFF 释放和响应报告电子表格)包含以下信息: