计算机科学硕士学位(http://catalog.utep.edu/grad/college-of-engineering/computer-science/computer-science- ms/);人工智能硕士学位(http://catalog.utep.edu/grad/college-of-engineering/computer-science/ms-data-information- sciences/);网络安全研究生证书(http://catalog.utep.edu/grad/college-of-engineering/computer-science/cyber-security-graduate-certificate/);工程硕士学位(http://catalog.utep.edu/grad/college-of-engineering/engineering-education-leadership/engineering-ms/);计算机科学博士学位(http://catalog.utep.edu/grad/college-of-engineering/computer-science/computer-science-phd/)(软件工程轨道)/计算机科学学士学位
是全球抗菌素耐药性创新基金 (GAMRIF) 的一部分。本新闻稿的内容完全由作者负责,并不一定代表 CARB-X 或其任何资助者的官方观点。关于金黄色葡萄球菌金黄色葡萄球菌 ( S. aureus ) 是一种革兰氏阳性细菌病原体,影响大约 30% 的人类,同时引起一系列感染,从 SSTI 到肺炎和血流感染等严重疾病。金黄色葡萄球菌是导致抗菌素耐药性 (AMR) 死亡的主要原因,其中社区获得性感染和医院获得性感染最为普遍。金黄色葡萄球菌引起的 SSTI 范围从轻微到严重,涉及微生物侵入皮肤层和下面的软组织。传统的抗生素治疗,包括口服疗法和用于严重病例的静脉注射,由于抗生素耐药性的增加而变得越来越无效。金黄色葡萄球菌已被世界卫生组织 (WHO) 指定为“高优先级”病原体,这凸显了创新疫苗方法和有效治疗策略的紧迫性。关于 LimmaTech Biologics AG LimmaTech Biologics 凭借其在疫苗技术和临床候选药物开发方面无与伦比的业绩记录,在抗击全球抗菌素耐药性流行病方面处于领先地位。该公司正在利用其专有的自佐剂和多抗原疫苗平台以及其他疾病特异性疫苗方法来预防越来越难以治疗的微生物感染。凭借数十年的专业知识和不断扩展的强大产品线,LimmaTech 团队致力于开发保护性解决方案,为全球带来变革性价值。LimmaTech Biologics 得到了专业医疗保健投资者的支持,包括 Adjuvant Capital、AXA IM Alts、Novo Holdings REPAIR Impact Fund 和 Tenmile。欲了解更多信息,请访问 www.lmtbio.com。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过 Illumina 平台的下一代测序或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过下一代测序使用 Illumina 平台或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
2.1 (a) 垂直 MEMS 耦合器的 (a) 关闭状态和 (b) 开启状态示意图 - 图片取自 [14] (c) MEMS 开关单元的 SEM - 图片取自 [22] . . 7 2.2 MEMS 开关元件的代表性传递函数。 . . . . . . . . . . . . . 8 2.3 (a) 128x128 SiPh MEMS 纵横开关 (b) 4x4 CMOS 高压驱动芯片倒装芯片接合到 SiPh MEMS 芯片的 GDS 屏幕截图。 . . . . . . . . . . . . 9 2.4 (a) SuperSwitch 1 高压驱动芯片的显微照片 (b) 驱动芯片的卡通布局图。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 假设采用单个 CMOS 芯片,则激活 128 行中的 1 行的简单原理图。 . 11 2.6 假设采用 4x4 CMOS 芯片阵列,则控制 128x128 开关的原理图。 12 2.7 (a) N c = 1 时第 0 列和第 1 列的逻辑 (b) N c = 2 时第 0 列和第 1 列的逻辑。 13 2.8 (a) 带有用于调试的环回多路复用器的 SuperSwitch1 控制芯片扫描架构的最终原理图。 (b) SuperSwitch1 控制器芯片的最终参数。 . . . . . 14 2.9 (a) SuperSwitch1 高压驱动电路原理图。 (b) 所有电源及其标称值的列表。 . . . . . . ... 19 2.13 (a) HVDD = 70 V、HVSS = 65 V 时所有角的 VSS 电阻 shmoo 图。 (b) 相同图,但 HVDD = 70 V、HVSS = 66 V。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.16 (a) 凸块 CMOS 焊盘的显微照片。(b) Au UBM 和 Au 微凸块的横截面。(c) 使用不同厚度的 UBM 在 SiPh 芯片上补偿 CMOS 焊盘高度差异的键合工艺说明。. . . . . . . . . 22
所有优先患者在收到转诊后两周内接受诊治。优先患者定义为: • 最近接受过手术/程序且需要康复的患者;和/或 • 最近受伤、骨折或脱臼且需要康复的患者;和/或 • 有急性和/或复杂需求且疼痛程度高(如急性背痛)的患者,导致严重功能丧失和/或睡眠障碍,无法工作或承担护理责任
(1) 根据应用的特定设备隔离标准应用爬电距离和间隙要求。必须小心保持电路板设计的爬电距离和间隙距离,以确保印刷电路板 (PCB) 上隔离器的安装垫不会减小此距离。在某些情况下,PCB 上的爬电距离和间隙会相等。在 PCB 上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 此耦合器仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。 (3) 在空气中进行测试以确定封装的浪涌抗扰度。 (4) 在油中进行测试以确定隔离屏障的固有浪涌抗扰度。 (5) 视在电荷是由局部放电 (pd) 引起的放电。 (6) 屏障两侧的所有引脚都绑在一起,形成一个双引脚设备。 (7) 在生产中使用方法 b1 或 b2。
“与'个性化医学'一起使用了不同的同义词,最常见的是“精密医学”和“分层医学”。尽管这些术语的字面意义可能存在细微的差异,但在实践中应用时,它们通常是指相同的概念。分层药物(主要在英国使用)更依赖治疗,而精确药物(主要在我们使用)具有相对较宽的意义,因为它指的是4p(预测,预防,个性化和参与医学)。我们使用个性化医学一词,因为该术语最好反映出基于个人的“个人资料”有效调整治疗方法的目标,这取决于个人的基因型和表型数据。根据个人的概况,PM旨在通过避免在当前基于证据的医学中使用的治疗失败方法来确定最佳治疗方案。”
• 首批非 mRNA 联合候选疫苗,包含两种已获批准的疫苗,用于预防流感和新冠肺炎感染 • 两项 1/2 期临床研究正在进行中,以评估联合候选疫苗的安全性和诱导的免疫反应 巴黎,2024 年 12 月 11 日。美国食品药品监督管理局已授予两种赛诺菲联合候选疫苗快速通道资格,用于预防 50 岁及以上人群的流感和新冠肺炎感染。这两种候选疫苗都结合了两种已获批准和授权的疫苗,经随机对照研究证明有效,且耐受性良好。第一种联合候选疫苗 (NCT06695117) 由基于流感蛋白的三价疫苗 Fluzone High-Dose 与佐剂重组 Novavax 新冠肺炎疫苗组成。第二种候选疫苗 (NCT06695130) 将基于流感重组蛋白的三价疫苗 Flublok 与 Novavax 新冠肺炎疫苗结合在一起。关键随机临床研究已证明 Fluzone 高剂量疫苗和 Flublok 可比标准剂量流感疫苗更好地预防老年人感染流感。此外,在现实世界证据研究中,它们已证明流感相关住院率显著且持续下降。研究表明,Novavax COVID-19 疫苗作为加强剂量使用时,耐受性优于目前可用的 mRNA COVID-19 疫苗。两项关键 3 期研究还证明,作为主要疫苗接种,该疫苗对 COVID-19 具有很高的疗效。
通过 Gen AI 增强试验设计 未来,团队将使用 Gen AI 从先前方案和先前试验结果、真实世界数据 (RWD)、监管先例和指导、患者和站点反馈等中挖掘非结构化数据。 他们将使用这些数据来开发试验概念和计划、设计关键统计要素、优化方案和模拟场景以帮助设计决策。 随着时间的推移,试验团队将使用 Gen AI 创建数字和替代终点、合成对照组和计算机模拟试验(仅通过计算机模拟进行)。 Gen AI 将利用非结构化数据释放更大的预测能力,并通过自动化传统的手动流程来简化试验设计和方案起草。 这样做将减少错误、消除冗余工作、减轻管理负担并加快试验启动。