1个定量生物学中心,中国北京北京大学高级跨学科研究学院; 2北京北京北京大学高级跨学科研究学院北京北京跨学科研究中心北京; 3苏黎世大学,瑞士苏黎世化学系; 4中国青岛山东大学生命科学学院; 5江苏省固体废物利用率省级钥匙实验室,中国有机肥料的关键实验室,中国南京的南京农业大学; 6赫尔辛基大学,芬兰赫尔辛基微生物学系; 7 Helmholtz抗感染国际实验室,中国青岛山东大学微生物技术的国家关键实验室; 8苏黎世大学,定量生物医学系,瑞士苏黎世
简介非酒精性脂肪性肝病 (NAFLD) 的特征是肝脏中中性脂质积聚。大约每 5 个病例中就有 1 个伴有病理性炎症和肝细胞损伤(气球样变性),称为非酒精性脂肪性肝炎 (NASH) (1)。这种更致病的 NAFLD 形式在约 35% 的患者中发展为纤维化,显著增加患肝细胞癌、肝硬化和急性肝衰竭的风险。晚期 NAFLD 也是导致 2 型糖尿病和心血管疾病的重要风险因素 (2, 3)。近年来,由于肥胖大流行,NAFLD 的发病率急剧上升;这导致 25% 的美国人口被诊断患有 NAFLD。NALFD 相关肝衰竭的发病率现在与丙型肝炎相当,是需要肝移植的主要原因 (4)。个人患 NAFLD 的倾向取决于遗传、生活方式、饮食和胰岛素敏感性 (5, 6)。肝脏甘油三酯库受肝脏脂肪来源的非酯化脂肪酸 (NEFA) 供应、肝脏从头脂肪生成 (DNL)、NEFA
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
量子计算提供了一种有希望的途径来降低日益增长的机器学习模型复杂性,这是天气预报、财务预测或工程的大型语言模型和模拟模型所必需的。图神经网络是一类特殊的机器学习模型,因其能够很好地处理结构化数据而备受关注。我们研究如何增强现有的 GNN,并通过归纳偏差发现量子电路最适合用于编码节点特征。提出的量子特征嵌入 (QFE) 将原始输入特征转换为量子态,从而实现非线性和纠缠表示。特别是,QFE 在指数级更大的特征空间中提供规范化、非冗余的权重矩阵,并且所需的量子比特比完全量子图神经网络少得多。在标准图基准数据集上,我们展示了对于相同参数数量,QFE 的表现优于其经典对应物,并且能够匹配指数级更大的模型的性能。最后,我们研究了在具体用例激光切割上使用混合量子图神经网络相对于经典替代方案的潜在优势。我们发现所提出的模型具有提升这些商业应用的性能,因此在短期内有潜力。
摘要:近年来,基于脑电图(EEG)的情绪识别引起了研究界越来越多的兴趣。EEG数据的弱信号、非平稳、多节律和多通道特性容易导致提取的EEG样本和特征在识别情绪状态时的贡献不同。然而,现有的研究要么没有同时考虑样本和特征重要性问题,要么只考虑了其中之一。在本文中,我们提出了一种称为sJSFE(半监督联合样本和特征重要性评估)的新模型,分别通过自步学习和特征自加权来定量测量样本和特征重要性。在SEED-IV数据集上的实验结果表明,通过同时挖掘样本和特征重要性可以大大提高情绪识别性能。具体来说,sJSFE 在三个跨会话识别任务中获得的平均准确率为 82.45%,分别比传统模型的结果高出 3.72% 和 7.21%,以及 10.47% 和 18.82%。此外,特征重要性向量表明 Gamma 频带贡献最大,前额叶、左/右颞叶和(中央)顶叶的大脑区域与情绪识别的相关性更高。样本重要性描述符表明,连续试验中视频类型的连续转换可能会削弱所收集 EEG 数据的特征标签一致性。
摘要:近年来,基于脑电图(EEG)的情绪识别引起了研究界越来越多的兴趣。EEG数据的弱信号、非平稳、多节律和多通道特性容易导致提取的EEG样本和特征在识别情绪状态时的贡献不同。然而,现有的研究要么没有同时考虑样本和特征重要性问题,要么只考虑了其中之一。在本文中,我们提出了一种称为sJSFE(半监督联合样本和特征重要性评估)的新模型,分别通过自步学习和特征自加权来定量测量样本和特征重要性。在SEED-IV数据集上的实验结果表明,通过同时挖掘样本和特征重要性可以大大提高情绪识别性能。具体来说,sJSFE 在三个跨会话识别任务中获得的平均准确率为 82.45%,分别比传统模型的结果高出 3.72% 和 7.21%,以及 10.47% 和 18.82%。此外,特征重要性向量表明 Gamma 频带贡献最大,前额叶、左/右颞叶和(中央)顶叶的大脑区域与情绪识别的相关性更高。样本重要性描述符表明,连续试验中视频类型的连续转换可能会削弱所收集 EEG 数据的特征标签一致性。
[3]德国穆尼奇技术大学TUM医学院神经病学系[4]德国穆尼奇技术大学TUM医学院Tum-NeuroImaging Center。[5]德国穆斯特大学穆斯特大学的转化精神病学研究所。[6]慕尼黑大学慕尼黑技术大学TUM医学院跨学科医学中心
1)真正的多轨道(电气化)2)软件利用率(智能)3)所有(多元化)的移动性4)Monozukuri(转化工厂环境)的未来,Toyota技术审查的这一问题首先讨论多条纹方法。这种方法需要提供最广泛的选择范围,以适合全球每个单独市场的不同能量情况和车辆使用。通过这种方法,丰田的目标是在建立一个越来越多的繁荣社会的同时,通过提供电池电动汽车(BEVS),插电式混合电动汽车(PHEV),混合电动汽车(HEVS),燃烧燃烧机车,水力发电速效,燃烧机车,燃烧机车,燃料燃烧器,燃烧器,燃烧器,燃烧器,燃烧器,燃烧器,燃烧器,燃烧器,燃烧器燃料速度很高(Hydrogencor)及以上很高, (FCEVS)。
本文将重点介绍脑电图 (EEG) 信号分析,重点介绍研究文献中提到的常见特征提取技术,以及可应用于各种应用。在这篇综述中,我们涵盖了时间域、频域、分解域、时频域和空间域中的单维和多维 EEG 信号处理和特征提取技术。我们还为讨论的方法提供了伪代码,以便从业者和研究人员可以在他们特定的生物医学工作领域中复制它们。此外,我们还讨论了人工智能应用,例如辅助技术、神经疾病分类、脑机接口系统以及它们的机器学习集成对应物,以完成 EEG 信号分析的整体流程设计。最后,我们讨论了可以在 EEG 信号分析的特征提取领域进行创新的未来工作。
人体的中央控制单位是大脑。肿瘤未在早期诊断出来,然后会影响大脑意味着它会导致患者的死亡。磁共振图像(MRI)不会产生任何有害的辐射,并且是基于肿瘤等级的区域计算和分类的更好方法。如今,没有自动系统来检测和识别肿瘤的等级。 本文提出了脑肿瘤分类,该分类分为四个阶段,作为预处理,分割,降低和提取,分类。 分割脑肿瘤是肿瘤检测和分类的基本步骤之一。 中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。 dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。 为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。 所提出的方法已在Brats 2015数据集上进行了验证。如今,没有自动系统来检测和识别肿瘤的等级。本文提出了脑肿瘤分类,该分类分为四个阶段,作为预处理,分割,降低和提取,分类。分割脑肿瘤是肿瘤检测和分类的基本步骤之一。 中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。 dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。 为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。 所提出的方法已在Brats 2015数据集上进行了验证。分割脑肿瘤是肿瘤检测和分类的基本步骤之一。中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。所提出的方法已在Brats 2015数据集上进行了验证。