使用生物医学大数据的核心是一个数据库,用于存储和管理生物和人类的生物学和物理测量。数据库有各种形状和大小,可以结构化(例如MySQL和Oracle),半结构(例如Neo4J和MongoDB)或未经验证(例如,Amazon S3和Google Cloud Storage)。这些数据库选项中的每一个都有优点和缺点。例如,可以使用诸如结构化查询语言(SQL)之类的工具轻松查询结构化的关系数据库,但可以为新数据元素进行设置和修改。半结构化和非结构化数据库更加灵活,但很难查询。在生物医学DO-MAIN中确定数据库解决方案可能会具有挑战性,因为数据具有许多不同的方式可能非常复杂。可以结构或非结构化的不同方式,这可能会为数据处理,数据输入,数据集成,数据库设计以及当然构建强大的查询构成挑战。
摘要:联合学习是一种创新的分散机器学习技术,为增强网络安全提供了重要潜力。通过使多个实体能够在不共享原始数据的情况下进行协作训练模型,联合学习可以保留数据隐私和安全性,同时利用各种数据集的集体智能。本文探讨了联合学习的核心原理,其在威胁检测,入侵检测系统(IDS)和恶意软件检测中的应用。它还解决了与数据隐私,通信开销和模型准确性相关的技术挑战,从而提供了克服这些障碍的解决方案。此外,本文讨论了未来的趋势和研究机会,包括将联合学习与区块链等新兴技术的整合。通过案例研究和现实世界实例,我们证明了联邦学习在改善网络安全措施方面的有效性。本文结束了,强调正在进行的研究和协作的重要性,以充分实现联合学习在维护数字基础设施中的潜力。关键字:联合学习,网络安全,威胁检测,入侵检测系统,恶意软件检测,数据隐私,安全汇总,通信开销,模型准确性,区块链集成
摘要 - 填充学习(FL)可以通过共享车辆本地模型而不是本地数据的梯度来在一定程度上保护车辆在车辆边缘计算(VEC)中的隐私。车辆本地型号的梯度通常对于车辆人工智能(AI)应用通常很大,因此传输如此大的梯度会导致较大的环境潜伏期。梯度量化已被认为是一种有效的方法,可以通过压缩梯度和减少位的数量,即量化水平,从而减少FL的每轮潜伏期,从而降低VEC。选择量化水平和阈值的选择决定了量化误差,这进一步影响了模型的准确性和训练时间。为此,总训练时间和量化错误(QE)成为启用FL的VEC的两个关键指标。与启用FL的VEC共同优化总训练时间和量化宽松至关重要。但是,随时间变化的通道条件会引起更多挑战来解决此问题。在本文中,我们提出了一个分布式的深钢筋学习(DRL)基于量化水平分配方案,以优化长期奖励,从总培训时间和量化宽松的时间来优化。广泛的模拟确定了总训练时间和量化宽松之间的最佳加权因素,并证明了拟议方案的可行性和有效性。
摘要众包信息可用于校准自动和自动驾驶汽车的高级驾驶员辅助系统/自动驾驶(ADAS/AD)参数。但是,在车辆网络中学习此类信息是具有挑战性的。一方面,单个车辆收集的数据可能不足以训练大型机器学习模型。另一方面,将原始数据上传到云服务器同样是不切实际的,这是由于符合通信的带宽要求和数据隐私威胁。本文通过应用联合学习(FL)寻求解决方案。我们旨在提高FL算法稳定性以提高预测准确性。因此,我们提出了一种基于方差的和结构感知的FL(VSFL),其中引入了FL服务器的基于方差的模型聚合方法,以进行最佳模型聚合,并为车辆客户提供了一个结构性模型培训方案,以解决统计异质性,而不会损害性能。我们首先为拟议的VSFL提供了理论分析。然后,我们使用合成数据和实际数据验证VSFL算法对车辆轨迹预测的效果。
摘要 - 车辆互联网(IOV)是智能运输系统(ITS)的至关重要技术,它将车辆与互联网和其他实体集成在一起。5G和即将到来的6G网络的出现具有巨大的潜力,可以通过启用超可靠,低延迟和高带宽通信来改变IOV。然而,随着连接性的扩大,网络安全威胁已成为一个重大问题。零日(0天)攻击的数量增加,该问题进一步加剧了问题,该攻击可以利用未知的漏洞并绕过现有的入侵检测系统(IDSS)。在本文中,我们提出了零X,这是一个创新的安全框架,可有效检测0天和N天攻击。该框架通过将深层神经网络与开放式识别(OSR)相结合来实现这一目标。我们的方法介绍了一种新颖的方案,该方案使用区块链技术来促进零X框架的可信赖和分散的联合学习(FL)。该计划还优先考虑隐私保护,使CAV和安全操作中心(SOC)在保护其敏感数据的隐私的同时贡献其独特的知识。据我们所知,这是第一项将OSR与隐私保护FL结合使用的工作,以在IOV领域识别0天和N天攻击。最近两个网络流量数据集的深入实验表明,所提出的框架达到了高检测率,同时最大程度地降低了误报率。与相关工作的比较表明,零X框架的表现优于现有解决方案。
摘要。联合学习最近已发展为一个关键的分离学习范式,其中服务器将众多经过客户培训的模型汇总到全球模型中,而无需访问任何客户端数据。公认的是,统计异质性在客户本地数据中对全球模型收敛速度的影响,但十个低估的,这种异质性也会导致偏见的全球模型,其准确性差异很大。上下文,普遍的解决方案需要修改优化目标。但是,这些解决方案经常忽略隐式关系,例如站点数据分布的成对距离,这使客户模型之间的成对独家或协同优化。这种优化会损害早期方法的功效,从而导致性能失衡甚至负转移。为了解决这个问题,我们提出了一种新颖的聚合策略,称为基于图形图的增强学习(Fedgraphrl)。通过在服务器端部署配备多层自适应图卷积网络(AGCN)配备的增强学习(RL)代理,我们可以从客户端状态向量中学习协作图,从而在优化过程中揭示客户端之间的协作关系。在引入的奖励的指导下,代理商分配了聚合权重,从而促进了自动决策和公平的改进。两个现实世界中多中心医学数据集的实验结果表明了拟议的Fed-GraphRl的有效性和优势。
摘要:随着人工智能(AI)技术的成熟度,AI在边缘计算中的应用将大大促进工业技术的发展。但是,关于工业互联网(IIOT)的边缘计算框架的现有研究仍然面临着几个挑战,例如深层硬件和软件耦合,多样的协议,AI模型的困难部署,边缘设备的计算能力不足以及敏感性以及延迟和能源消耗的敏感性。为解决上述问题,本文提出了一个软件定义的面向AI的三层IIOT IIOT EDGE计算框架,并介绍了面向AI的Edge Computing System的设计和实施,旨在支持设备访问,使设备访问能够访问和部署AI,从云中进行AI,并允许整个模型从数据驱动到模型培训以完成模型培训以完成Edge的模型。此外,本文提出了一种基于时间序列的方法,用于在联合学习过程中卸载设备选择和卸载,该方法将低效节点的任务有选择地卸载到边缘计算中心,以减少训练延迟和能源消耗。最后,进行了实验以验证所提出方法的可行性和有效性。使用该方法的模型训练时间通常比随机设备选择方法低30%至50%,而在拟议方法下的训练能量消耗通常少35%至55%。
摘要。随着自主着陆系统中深度学习技术的发展不断增长,面对可能的对抗性攻击,主要挑战之一是信任和安全。在本文中,我们提出了一个基于对抗性学习的框架,以使用包含干净本地数据及其对抗性版本的配对数据来检测着陆跑道。首先,本地模型是在大型车道检测数据集上预先训练的。然后,我们求助于预先训练的模型,而不是利用大实例 - 自适应模型,而是诉诸于一种称为比例和深度特征(SSF)的参数 - fne-fne-tuning方法。其次,在每个SSF层中,干净的本地数据及其广泛的广告版本的分布被列出,以进行准确的统计估计。据我们所知,这标志着联邦学习工作的frst实例,该工作解决了登陆跑道检测中对抗性样本问题。我们对降落方法跑道检测(猪油)数据集的合成和真实图像的实验评估始终证明了所提出的联邦对抗性学习的良好性能,并对对抗性攻击进行了鲁棒。