我们将涵盖古典和现代密码学和密码分析。古典系统,包括替代密码,仿射密码,Vig´enere密码和Feistel Ciphers,使用基本数学来构建;攻击和解密的分析还使用基本数学,包括概率和统计的某些方面。des(数据加密标准),基于经典方法,并由AES取代(高级加密标准)。我们将开发必要的背景来了解DES和AES。现代加密系统(公共键系统)是数学上的大量数学,采用了模块化算术,质数理论,因素化理论,群体理论,现场理论,。。。)。因此,我们将不得不花费大量时间在基础数学上。我们还将讨论各种加密协议,伪随机序列(反馈移位寄存器),。。。。
量子密码分析始于 Shor [40] 的开创性工作,他证明了 RSA 和 Diffie-Hellman 密码体制可以被量子计算机破解。Simon 算法 [41] 的工作原理非常相似,它可以在 ( { 0 , 1 } n , ⊕ ) 中找到一个隐藏周期,但它最近才开始应用于密码分析。2010 年,Kuwakado 和 Morii [29] 展示了如果允许对手进行叠加查询,如何在量子多项式时间内区分三轮 Feistel 网络和随机排列。后来,人们在这种情况下获得了更多结果 [30, 24, 31]。然而,尽管令人印象深刻,但这些破解需要叠加查询模型,在该模型中,攻击者可以将原语作为量子预言机进行访问;例如,对具有未知密钥的密码进行量子加密查询。在本文中,我们首次在标准查询模型中应用了 Simon 算法,表明上述中断可能会在该模型中产生影响。这也是量子隐藏周期算法在仅使用经典查询的对称密码学中的首次应用。我们的核心结果之一是,在解决具有隐藏结构的碰撞搜索问题时,我们可以用多 (n) 个量子比特替换指数大小的内存。即使时间加速仍然是二次的,这也为量子对手带来了之前意想不到的优势。
摘要在工作中,作者提出了使用信息驱动的置换操作来实施加密数据转换的技术之一。已经开发了一种基于使用基本信息驱动的置换操作的基本组的加密数据转换方法的算法。基于提出的算法的三个字节数据的加密转换过程由包含信息驱动的排列,Feistel网络,Shift和XOR操作以及添加模量2。在高级面向对象的编程语言Python中,已开发算法的软件实现已进行。根据提出的使用先前合成的信息驱动的置换操作的方法,根据提出的方法进行了进一步的研究结果,并进行了进一步的研究并对加密数据转换结果进行定性评估。根据NIST STS软件包的统计测试评估了该算法的有效性,以及其适用于通过硬件和软件实现数据加密的适用性,基于测试结果与使用标准加密算法DES,AES,AES,AES,AES,AES,blowfish,blowfish,Kalyna,strumok,strumok,strumok,strumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok,straumok和Lineareareareareal反馈移位寄存器。关键字1技术,信息驱动的置换操作,基本操作,算法,加密转换,密钥,圆形,统计测试。1。简介