世界小动物兽医协会 (WSAVA) 疫苗接种指南小组 (VGG) 成立的目的是制定犬猫疫苗接种指南,旨在帮助全球兽医。之前的指南发表于 2007 年、2010 年和 2016 年,在同行评审的科学文献中被引用了数百次,下载了数万次。本文件是这些指南的更新版本。VGG 认识到其建议必须广泛且基于基本的免疫学原理,因为关于犬猫疫苗和疫苗接种的详细建议可能适用于某些国家或地区,但在其他地方可能不太适用。指南旨在为兽医的决策提供广泛的指导。它们不描述强制性或最低护理标准。国家和地区兽医协会以及个体兽医或兽医诊所可以使用这些指南制定适合自己当地情况的疫苗接种计划。尽管如此,VGG 强烈建议所有狗和猫都接种疫苗。这不仅可以保护单个动物,还可以提高“群体免疫力”,帮助最大限度地降低传染病爆发的风险。考虑到这一背景,VGG 将核心疫苗定义为所有狗和猫都应接种的疫苗,考虑到它们的生活方式和居住或旅行的地理区域。一些核心疫苗可以保护动物免受全球分布的潜在危及生命的疾病的侵害,而另一些核心疫苗可以保护动物免受仅在特定国家或地区流行的危及生命的疾病的侵害。世界各地的狗的核心疫苗是预防犬瘟热病毒 (CDV)、犬腺病毒 1 型 (CAV) 和犬细小病毒 2 型 (CPV) 的疫苗。世界各地的猫的核心疫苗是预防猫细小病毒 (FPV)、猫杯状病毒 (FCV) 和猫疱疹病毒 1 型 (FHV) 的疫苗。在世界狂犬病流行的地区,即使没有法律要求,接种狂犬病毒疫苗也应被视为对狗和猫必不可少的(即狂犬病疫苗在这些地方是核心疫苗)。犬钩端螺旋体病是另一种危及生命的人畜共患疾病,广泛分布于世界各地。在犬钩端螺旋体病流行的国家或地区,如果已知相关血清群并且有合适的疫苗可用,则强烈建议对所有犬只接种钩端螺旋体病疫苗,并且这些疫苗应被视为这些地方的核心疫苗。在世界许多地方,猫白血病病毒 (FeLV) 相关疾病是地方性的。在这些地方,FeLV 疫苗应被视为幼猫(<1 岁)和可以外出或与其他可以外出的猫一起生活的成年猫的核心疫苗。VGG 认识到母源抗体 (MDA) 会严重干扰目前大多数幼猫在幼年时期接种的核心疫苗的效力(幼猫可预防 CDV、CAV 和 CPV,幼猫可预防 FPV、FCV 和 FHV)。由于 MDA 水平在窝内和窝间差异很大,VGG 建议每 2 至 4 周给幼猫接种多剂核心疫苗,最后一次接种应在幼猫 16 周龄或以上时进行。在幼猫只能接种一次疫苗的情况下(例如,在成本受限的情况下),应在幼猫 16 周龄以上时接种核心疫苗。建议在 26 周龄或之后重新接种疫苗(而不是等到 12 至 16 个月大),以便及时为少数在 16 周以上接种疫苗时可能仍存在干扰性 MDA 的动物进行免疫接种。VGG 支持从 20 周龄开始使用血清学检测来检测接种疫苗后的血清转化(犬血清转化为 CDV、CAV 和 CPV,猫血清转化为 FPV)。这有助于确认幼年和成年动物的主动免疫保护,有助于优化成年动物的重新接种间隔,在某些情况下,有助于管理收容所中的传染病爆发。疫苗不应不必要地接种。成年动物的核心疫苗接种频率不应超过必要频率。有大量经过同行评审的已发表证据表明,大多数现代改良活病毒 (MLV) 核心疫苗提供的免疫持续时间 (DOI) 为多年。 VGG 将非核心疫苗定义为那些应该强烈推荐给那些由于地理位置和/或生活方式(如室内外活动、家庭中有多只宠物)而有可能感染非核心感染的动物的疫苗。兽医需要与宠物主人进行仔细的沟通,以决定向每位患者推荐哪些非核心疫苗。VGG 将某些疫苗列为不推荐疫苗,因为没有足够的科学证据证明可以在任何地方推荐使用这些疫苗。VGG 没有考虑一些在特定地理区域可用性或适用性非常有限的“次要”疫苗产品。VGG 强烈建议兽医教育客户定期健康检查(通常每年一次,有时更频繁)的价值,而不是谈论“疫苗接种咨询”。年度健康检查不仅仅是一次疫苗接种咨询,尽管它通常包括接种需要每年接种的选定疫苗。大多数非核心疫苗的 DOI 约为 1 年。还鼓励兽医在宠物健康检查前和检查期间接受培训,以改善宠物、主人和兽医人员的体验。Free Fear 培训计划 ( https://fearfreepets.com/fear-free-certification-overview/ ) 和 Cat Friendly 证书计划 ( https://catvets.com/cfp/cat-friendly-certificate-program/ ) 就是例子。VGG 考虑在收容所和庇护所中使用疫苗,再次认识到其中一些设施运营的财务限制。VGG 最低收容所指南规定,进入此类机构的所有狗和猫都应在进入之前或进入时接种核心 MLV 疫苗。在财务允许的情况下,这些机构
在大流行期间佩戴口罩是防止病毒相关传染病传播的重要保护措施。然而,通过接触口罩间接传播病毒的风险是人们最早担心的问题之一。通过在口罩的纺织结构上补充病毒防护涂层,可以最大限度地减少这一问题。因此,在这一概念中,应评估制造病毒防护过滤介质的合适技术。在本研究中,无纺布聚酰胺 6 (PA6) 过滤材料用带负电荷的线性聚甘油硫酸盐 (LPGS) 作为病毒结合官能团进行功能化。研究了两种涂层条件,其中直接与 LPGS 共价涂覆已成为最佳涂层方法,对 PA6 纳米纤维结构没有损坏。未涂层的 PA6 和 LPGS 涂层的 PA6 过滤材料对空气传播的猫冠状病毒的病毒颗粒过滤效率分别为 95% 和 94%,对空气传播的马疱疹病毒 1 (EHV-1) 的病毒颗粒过滤效率分别为 98% 和 86%。然而,溶液中的 SARS-CoV-2 吸收试验表明,当与 LPGS 涂层 PA6 滤料一起孵育一小时时,LPGS 涂层可将病毒滴度降低高达 71%。因此,未涂层的 PA6 材料不会出现这种效果。这些发现证实了 LPGS 涂层适合作为抑制不同流行病中病毒传播的合适平台。
摘要:利什曼病是一种重要的媒介传播疾病,代表了一个严重的公共卫生问题,包括在西西里岛(意大利),这被认为是流行地区。我们从2013年到2021年在西西里岛收集了犬,猫科动物和人类数据,而昆虫学调查仅在2013年和2021年进行。总体而言,在一个或多个诊断测试中,狗的23,794/74,349(34.4%)和274/4774(11.8%)呈阳性。总共报告了467例人类利什曼病,其中71%显示皮肤病和29%的内脏受累。患者人数最多的省份是Agrigento(45.4%)和巴勒莫(37%)。在2013年,每纤维中的省是西西里岛(68.7%)的主要沙子,其次是Phlebotomus perniciosus(17.2%)和Sergentomya Minuta(14%)。在2021年,每条纤维中的静脉植物被确认为最常见的物种(61.6%),其次是phlebotomus perniciosus(33.1%)和Sergentomya Minuta(4.7%)。特别感兴趣的是在Agrigento中鉴定出phlebotomus papatasi(0.41%)。我们的回顾性研究可以为卫生当局提供适当的筛查,治疗和控制策略,以降低利什曼尼亚发病率。这项研究检查了西西里岛利什曼病,监视和预防的当前状态,但也强调了可以通过应用一项健康原则来解决的延期。
大流行期间戴着口罩是针对病毒相关的传染病传播的重要保护措施。然而,通过处理口罩间接传播病毒的风险是最早的关注点之一。可以通过用病毒保护涂层补充口罩的纺织结构来最小化此问题。因此,在这个概念中,应评估用于制造病毒保护过滤培养基的合适技术。在这项研究中,非织造聚酰胺6(PA6)过滤材料用负电荷的线性聚甘油硫酸盐(LPG)作为病毒结合官能团进行功能化。研究了两个涂层条件,其中与LPG的直接共价涂层成为最佳涂料方法,没有显示对PA6纳米纤维结构的损坏。未涂层的PA6和LPGS涂层的PA6过滤材料分别显示出空气中的猫科罗尼病毒的病毒颗粒过滤率为95%和94%,对空气中的猫科罗尼亚病毒,分别为98%和86%,分别为空源性马疱疹病毒1(EHV-1)。然而,溶液中的SARS-COV-2吸收测定法表明,与lpgs涂层的PA6滤光片培养基孵育一小时时,LPGS涂层将病毒滴度降低了71%。因此,对于未涂层的PA6材料,没有看到这种效果。这些发现确认LPG涂层的适用性是抑制不同大流行病病毒传播的合适平台。
相关性肿瘤坏死因子α(TNFα,也称为Cachectin和TNFSF1A是TNF超家族的原型配体。这是一种多效分子,在炎症,凋亡和免疫系统发育中起着核心作用。TNFα由多种免疫和上皮细胞类型产生。35个氨基酸(AA)细胞质结构域,21 aa跨膜段和178 AA AA细胞外域(ECD)的牛div>牛TNFα合成。在ECD中,牛TNFα与犬,棉花大鼠,马,猫,猫,人,小鼠,猪,大鼠和恒河类TNFα共享64%-83%的序列身份。26 kDa型2型跨膜蛋白被内部组装,形成非交易的Homerotrimerers。这种复合物的结扎诱导促进淋巴细胞共刺激但减少单核细胞反应性的反向信号。 通过TACE/ADAM17对膜结合的TNFα的切割释放了55 kDa可溶性三聚体的TNFα。 tnfα的三聚体结合了无处不在的TNF RI和造血细胞受限的TNF RII,这两种细胞也表示为同二聚体。 TNFα通过控制凋亡来调节淋巴组织的发育。 它还通过诱导血管内皮细胞和巨噬细胞的激活来促进炎症反应。 TNFα是几种炎症性疾病中的关键细胞因子。 它通过对胰岛素耐药性和脂肪酸代谢的影响有助于2型糖尿病的发展。这种复合物的结扎诱导促进淋巴细胞共刺激但减少单核细胞反应性的反向信号。通过TACE/ADAM17对膜结合的TNFα的切割释放了55 kDa可溶性三聚体的TNFα。tnfα的三聚体结合了无处不在的TNF RI和造血细胞受限的TNF RII,这两种细胞也表示为同二聚体。TNFα通过控制凋亡来调节淋巴组织的发育。它还通过诱导血管内皮细胞和巨噬细胞的激活来促进炎症反应。TNFα是几种炎症性疾病中的关键细胞因子。它通过对胰岛素耐药性和脂肪酸代谢的影响有助于2型糖尿病的发展。
抗击传染病需要开发安全有效的疫苗,以产生持久的保护性免疫力。在少数情况下,疫苗介导的免疫反应可能导致随后感染疫苗所针对的病原体时病理加剧。针对呼吸道合胞病毒 (RSV)、麻疹病毒 (MV)、登革热病毒 (DENV)、HIV-1、猿猴免疫缺陷病毒 (SIV)、猫免疫缺陷病毒 (FIV)、严重急性呼吸综合征冠状病毒 1 (SARS-CoV-1) 和中东呼吸综合征冠状病毒 (MERS-CoV) 的候选疫苗,在动物模型中,以及在少数情况下在人类中,报告或至少怀疑存在这种疫苗相关增强性疾病 (VAED)。尽管临床和流行病学证据缓解了这种担忧,但最初也提出了一些关于针对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的疫苗的短期和长期安全性的担忧,该病毒正在导致持续的 COVID-19 大流行。尽管导致这种现象的机制尚未完全了解,但抗体依赖性增强 (ADE)、补体依赖性增强和细胞依赖性增强的个体和/或集体作用已被强调。本文,我们回顾了可能与 VAED 风险相关的机制,这些机制在评估疫苗安全性以及寻找可以缓解此类担忧的模型和免疫策略定义方法时都很重要。
目的:这项研究的目的是分析来自诊断为先天性甲状腺功能减退症(CH)的CAT的甲状腺过氧酶(TPO)基因的不同片段的序列。材料和方法:由于您的流血刺激激素和低T4的血清浓度高,因此被诊断为猫科动物。从具有CH的狗的TPO基因中含有突变的序列的分析允许预测受影响CAT中基因中的突变位点。此外,基于聚合酶链反应测试的设计还可以放大和测序这些基因段。此外,在患者死亡后,进行了死灵病和组织病理学,寻找受影响器官的宏观和微观改变。结果:尸检检查表明甲状腺的心脏同心左心室高奖杯和甲状腺的双侧增大。甲状腺的组织病理学表现出卵泡性发育不全和低胶体产生。gDNA分析允许检测TPO基因中的突变,该突变与位于核苷酸14.627(G/A)中的核苷酸12.542(a> g)中的一个过渡相对应,在核苷酸和核苷酸30.713(g/c)中。结论:由于存在这些多态性,因此怀疑存在一种突变等位基因的单相表达。需要进行更多的研究,以了解杂合中杂合中的作用,以及与CH在CAT中相关的基因突变的作用。另一方面,本研究的数据是开发分子测试的基础,该测试可以快速准确诊断猫中的HC。
哺乳动物肠道微生物群的摘要成员代谢宿主没有消化的各种复杂碳水化合物,这些碳水化合物被集体标记为“饮食纤维”。虽然每个菌株用来在肠道中建立营养生态位的酶和转运蛋白通常是非常特异的,但碳水化合物结构与微生物生态学之间的关系是不完美的。本研究利用了复杂的碳水化合物结构确定的最新进展来测试纤维单糖组成对微生物发酵的影响。在72小时的时间内,在改良的小型反激阵阵列系统中,通过合并的猫粪接种物在经过72小时的经过修改的小型粪便中发酵了具有不同单糖组成的55个纤维。单糖葡萄糖和木糖的含量与发酵过程中pH的降低显着相关,这也可以从短链脂肪酸乳酸,丙酸,丙酸和信号传导分子吲哚二乙酸的浓度中预测。微生物组的多样性和组成也可以通过单糖含量和SCFA浓度来预测。尤其是,乳酸和丙酸的浓度与最终α多样性相关,并且与包括乳杆菌和dubosiella在内的几个属的相对丰度显着相关。我们的结果表明,单糖的组成提供了一种富裕方法,以比较饮食,肠道微生物群和代谢产物产生的饮食纤维纤维和发现的联系。
• 申请者需与合作兽医诊所和临床导师一起申请远程课程。寻找合作诊所来支持至少 2 年的学习历程是申请者的责任 • 主办诊所必须按照省级要求获得许可,并且必须达到或超过省级实践标准中规定的最低实践标准。 • 诊所必须能够处理小动物(猫科动物和犬科动物)和大型动物(牛科动物和马科动物)的病例。诊所必须进行小动物普通外科手术(最低要求是在全身吸入麻醉下对狗进行绝育)。诊所必须承诺为学生提供患者、材料和用品以供培训,并与兽医技术课程合作,按照课程和课程政策与程序促进学习。 • 如果主要诊所无法为专业课程提供诊断测试,学生可以有两个主办诊所。 • 主办诊所必须提供一名或多名萨斯喀彻温理工学院兽医技术项目认可的诊所导师,这些导师必须是持牌兽医和/或毕业于 CVMA 认可培训项目的 RVT,并且至少拥有 2 年的临床经验。临床导师与项目和学生合作,创造培训机会,指导技术技能,并提供形成性和评估性反馈。• 申请人、主办诊所和诊所导师应查看表格 C(附录)以了解详细信息。• 请注意,就业不是学生-主办诊所关系的必要条件。但是,强烈建议双方在填写表格 C 之前先试用一段时间的志愿者/工作,以确保兼容性。
文章历史:24-704 收到日期:2024 年 11 月 10 日 修订日期:2024 年 12 月 20 日 接受日期:2024 年 12 月 24 日 在线优先:2025 年 1 月 7 日 摘要 本研究旨在从分子水平上鉴别栉首蚤种类并从寄生在越南狗和猫身上的跳蚤中检测犬复孔绦虫。研究样本包括从狗和猫身上采集的 20 个混合跳蚤样本。方法上,从跳蚤中提取的 DNA 用于 PCR 扩增跳蚤 18S rDNA 基因的 1200bp 区域和犬复孔绦虫 28S rDNA 基因的 653bp 片段。随后,选择两个跳蚤阳性 PCR 产物和两个犬复孔绦虫阳性 PCR 产物(分别来自狗和猫)进行系统发育树分析。结果表明,在第一次 PCR 中所有 20 个样本均为阳性,显示 1200bp 的条带,与跳蚤 18S rDNA 基因的估计大小相对应。此外,在第二次 PCR 中,20 个样本中有 4 个显示约 653bp 的条带,与 D. caninum 28S rDNA 基因的预期大小一致。系统发育分析进一步表明分离的跳蚤为猫栉首蚤。本研究中两种 D. caninum 分离株之间的百分比同一性为 94.1%,表明这两种分离株属于两种不同的基因型(猫栉首蚤和犬栉首蚤基因型)。本研究是越南首次报告从狗和猫跳蚤中检测出 D. caninum 绦虫。此外,本研究还提醒狗和猫的主人,从他们的伴侣动物身上消灭跳蚤以防止感染复孔绦虫非常重要。关键词: Ctenocephalides sp., Dipylidium caninum, 狗, 猫, 越南