该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振是由于Zeeman拆分对材料的宏观磁化而导致自旋进液磁矩相互作用的影响。核心在铁磁共振时达到负渗透性。由于负渗透性,铁素体将磁化点抵消到施加的直流电场上给出的铁氧体芯的一端。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。简介:一种有趣的科学现象,但尚未理解的是磁性。磁性材料用于许多重要的技术,从大规模发电,存储,传输电动机和发电机的高性能磁铁到纳米级上的磁性信息,包括使用SpinTronics概念的存储,逻辑和传感器设备。物质的磁性继续引起科学的好奇心和想象力。电子的自旋是磁性的基本组成部分,铁磁,铁磁和抗磁磁性材料的多样性以及磁磁性和磁磁材料的多样性是由附近电子旋转的材料中附近电子旋转的不同耦合产生的。磁性材料的特征,行为和效用受材料内部竞争相互作用引起的显微镜旋转构型的影响。外源磁,电场和光场以及光本身都会影响或修改磁化本身。这为将来的超湿,超快速和低功率微电子系统的发展打开了大门。即将到来的技术时代(IoT)时代将受到技术,经济,环境和社会的这些成就的影响[1]。
实验和理论结果均表明,由于磁矩非常小,平行态和垂直态之间的微小能量差可以体现为反铁磁层间耦合的相当大的层间耦合场,与铁磁层间耦合相比具有独特的优势。结合温度和间隔层厚度相关的 SMR 测量、XMLD 表征和理论模型,证明了反铁磁结中的正交层间耦合。
Cr% Δ E (meV) 稳定相 M Tot ( μB ) M Al ( μB ) M Cr ( μB ) M Sb ( μB ) 4 0.00026 铁 0.11671 0.00163 3.13973 -0.02824 8 0.00146 铁 0.23694 0.00338 3.1305 -0.05262 12 0.00313 铁 0.35691 0.00504 3.12125 -0.07593 16 0.00517 铁 0.47674 0.00663 3.11375 -0.09868 20 0.00753 铁0.59647 0.00817 3.10763 -0.12114 24 0.00095 铁磁 0.71616 0.00969 3.10249 -0.14348 此外,图3显示了Cr掺杂AlSb的配置,其表现出正的ΔE,表明其在铁磁状态下比在反铁磁状态下更稳定。图3中的分析表明,不仅杂质的3d态,而且Sb的4p态也对费米能级有显着贡献。AlSb和Cr的共掺杂表明铁磁稳定基于具有强pd杂化的双交换机制。此外,图3显示了计算出的Cr掺杂闪锌矿AlSb的居里温度(TC)。结果表明,这两种过渡金属在室温以上都有较高的TC值。值得注意的是,钒的TC高于钛,达到750K。而且,图上显示TC随掺杂浓度的增加而增加。
二维半金属在磁性纳米器件中展现出巨大的潜力。然而,二维半金属的发现仍然基于逐案评估。本文,我们提出了设计具有大自旋间隙的二维过渡金属基半金属的一般规则,即找到具有洪特规则分裂的 d 轨道和深阴离子 p 轨道能级以使 dp 相互作用最小化的材料。基于对具有扭曲四面体晶场的 54 种过渡金属化合物 MX 2(M = 3 d 区过渡金属;X = VIA-VIIA 元素)的 DFT 计算,我们发现所有铁磁化合物都表现出半金属性。我们将半金属性归因于具有弱 dp 轨道杂化的 M 阳离子的部分填充 d 轨道的洪特规则分裂。由于 Cl p 轨道能级较深(− 8.4 eV),氯化物表现出大于 4 eV 的自旋间隙。我们在过渡金属三氯化物 M Cl 3(M = 3 d 区过渡金属)中验证了这一规则。利用这一规则,我们预测铁磁单层 M Cl 和 M 3 Cl 8(M = 3 d 区过渡金属)是具有大带隙的半金属。这项工作丰富了二维半金属的种类,并可能带来新型磁性纳米器件。
我们已经研究了垂直磁性共振(FMR)辅助自旋转移扭矩(STT)垂直MTJ(P-MTJ)的辅助旋转转移扭矩(STT)切换,并使用微磁模拟使用包括热噪声效应的微磁模拟使用不均匀性。具有适当的频率激发,锯可以在磁刻录材料中诱导铁磁共振,并且磁化强度可以在圆锥体中进攻,从垂直方向高挠度。随着通过侧向各向异性变化以及室温热噪声掺入不均匀性的情况下,不同增长的磁化进攻可能显着不合同。有趣的是,即使在不同各向异性的晶粒之间,不同晶粒的进动物也处于相位状态。然而,由于声感应的FMR引起的高平均挠度角可以通过显着降低STT电流来补充STT开关。即使施加的应力诱导的各向异性变化远低于总各向异性屏障。这项工作表明,锯诱导的FMR辅助开关可以提高能源效率,同时可扩展到非常小的尺寸,这对于STT-RAM在技术上很重要,并阐明了这种范式在具有热噪声和材料不显着性的现实情况下这种范式在现实情况下的潜在鲁棒性的物理机制。
混合纳米电子器件通过将超导体的宏观相位相干性与半导体器件的电荷密度控制相结合,为开发量子技术提供了一个有前途的平台。本论文重点研究混合纳米电子器件的建模及其在研究物质拓扑相和量子信息处理中的应用。论文的第一部分介绍了一种用于静电建模的新型无轨道方法。该方法显著提高了界面附近密度分布的精度,同时最大限度地降低了计算成本。接下来,我们使用基于对称性的非局部电导谱方法来研究多端器件中的传输测量。这种方法可以识别自旋轨道耦合的方向并检测非理想效应。然后,论文探讨了铁磁混合异质结构,它通过结合磁性绝缘体插入物来实现对有效磁场的局部控制。我们研究了超导和铁磁邻近效应的相互作用,并提出了一种用于展示拓扑超导的平面设计。我们还展示了如何使用该平台来实现可配置的 0-π 约瑟夫森结,以及如何实现非正弦电流相位关系。最后,本论文研究了以高次谐波为主的结在超导量子比特中的应用。我们提出并研究了一种耦合方案,用于在异质量子架构中纠缠奇偶校验保护的量子比特和可调谐通量的传输子。
两端施加相反自旋极化的有限长度铁磁链是最简单的受挫自旋模型之一。在干净的经典极限中,由于边界条件而插入的畴壁以相等的概率存在于任何一个键上,并且简并度恰好等于键数。如果通过横向场引入量子力学,畴壁将表现为盒子中的粒子,并且更倾向于靠近链的中间而不是两端。因此,真实量子退火器的一个简单特征是这些极限中的哪一个在实践中实现。在这里,我们使用具有反平行边界自旋的铁磁链来测试真实通量量子比特量子退火器,并发现与两个预期相反,由于存在有效随机纵向场,发现的畴壁分布不均匀,尽管在量子比特之间的耦合名义上为零时进行了调整以将这些场归零。我们对畴壁分布函数的形式进行了简单的推导,并展示了我们发现的效应如何用于确定表征退火器的有效随机场(噪声)的强度。以这种方式测量的噪声小于单量子比特调谐过程中看到的噪声,但仍然会定性地影响退火器执行的模拟结果。
操纵磁各向异性的能力对于磁传感和存储工具至关重要。表面碳物种是金属氧化物和高贵金属上限层的成本效益替代品,从而在超薄铁磁性磁性纤维中诱导垂直磁各向异性。在这里,在碳一氧化碳(CO),分散的碳和石墨烯的吸附后修饰了几层厚的CO薄膜中的磁性的不同机制。使用化学和磁灵敏度使用X射线显微镜,在表面碳的积累期间,监测了面向面向非平面自旋的重新定向转变,直至形成石墨烯。互补的磁光测量结果显示,在CO上分散的碳在室温下显示出弱垂直磁各向异性(PMA),而石墨烯覆盖的钴表现出显着的平面外胁迫型。密度功能理论(DFT)计算表明,从CO/CO到C/CO再到石墨烯/CO,磁晶和磁静脉各向异性的组合促进了平面外磁化。各向异性能量弱依赖于碳化物物种覆盖率。相反,碳化学状态从碳化物到石墨的演变伴随着由磁各向异性能量控制的特征域大小的指数增加。除了对碳 - 铁磁铁界面提供基本了解之外,本研究还提出了一种可持续的方法,可在超薄铁磁性磁铁中调整磁各向异性。
自旋转移扭矩磁盘磁盘随机记忆(STT-MRAM)是一项新兴技术,该技术旨在取代其不易作用,并且由于其不易作用,并且越来越改善功耗,高存储密度,快速的写作速度,强大的耐力和长期数据退休,因此可能会替代其不易启动性的闪光,DRAM和慢速SRAM。如图1A,STT-MRAM设备由铁电磁(FM)参考层(RL)组成,具有固定磁化方向,绝缘体隧道屏障(TB)和铁磁自由层(FL),具有可变的磁化方向。这三层的连接形成了磁性隧道连接(MTJ),由于这是单元的中心分量,因此整个结构被称为单个MTJ(SMTJ)。信息是基于出现的不同电阻水平存储的,当将FL磁化设置为平行(P)或反平行(AP)与RL磁化方向时。这些磁化状态之间的变化是通过通过与层堆栈平行的结构进行足够大的电流来实现的[1]。目前,STT-MRAM设备面临的挑战之一是它们的小型化是为了达到增加的存储密度,这将使它们用于更广泛的应用,从而扩大了对常规波动记忆的竞争力。该目标的主要途径是减小位单元大小,该大小主要由提供开关电流所需的接触尺寸确定。因此,降低电流和同样的电压,
由于腿部机器人的出色机动性和障碍物越过障碍物,因此有可能替换自主腿攀岩机器人的手动检查外部板外板。但是,当磁吸附腿壁攀爬机器人在墙壁的凸点或凸线上的步骤,甚至当机器人失误时,机器人可能会从铁磁壁上脱离。因此,本文提出了一个触觉传感器,用于腿部磁吸附壁式机器人,以检测磁吸附状态并提高机器人自主爬行的安全性。触觉传感器主要包括三维(3D)打印的外壳,触觉滑块和三个等轴测传感单元,并具有优化的几何形状。该实验表明,摩擦电触觉传感器可以监视触觉滑块的滑动深度并控制发光设备(LED)信号光。此外,在检测机器人脚吸附状态的演示实验中,摩洛电触觉传感器对各种铁磁壁表面具有很强的适应性。最后,这项研究建立了一个机器人步态控制系统,以验证摩擦电触觉传感器的反馈控制能力。结果表明,配备了摩擦式触觉传感器的机器人可以识别爬行墙上的危险区域,并自主避免这种风险。因此,拟议的Triboelectric触觉传感器在实现机器人的触觉能力以及增强超大船的安全性和智能检查方面具有巨大的潜力。