我们通过将POTTS模型扩展到包括真实和合成空间中邻近的原子之间的相互作用并研究其效能特性的原子之间的相互作用来引入超声分子合成或rydberg原子合成维度的量子物质类似物。对于J 1的中间值,所得阶段和相图与时钟和小人模型的相似,其中三个阶段出现。有一个类似于高温无序相和低温铁磁相之间量子合成维度模型的板相。我们还使用机器学习来使用混淆方法学习相图的非平凡特征,该方法能够辨别出几种连续的相变。
补偿磁铁的物理学:抗铁磁铁,磁磁补偿的铁磁铁和合成反铁磁铁非常丰富,有时是独一无二的和出乎意料的。补偿磁铁中允许的新效果类型包括:超快(THZ)动力学,伪粘合元素,(自我)补偿的天空,交错的拓扑结构以及与自旋极化三胞胎超导性的兼容性。因此,补偿磁铁的使用构成了开发新的旋转组件的范式转移,超出了传统的铁磁体的可能性。这个特殊的收藏品为读者提供了最新的材料开发项目,探讨了尖端的基本物理和有希望的补偿磁铁应用。可以将其分为七个主题组,每个组都处理该学科的当前和快速增长的分支。
使用数字万用表测量电解槽。使用给定材料作为电容器内部的介电层来测量其介电常数。使用螺线管研究 CRO 上给定铁磁材料的磁滞回线,并计算给定材料的矫顽力、剩磁和饱和磁化强度。使用亥姆霍兹线圈研究磁场叠加的原理。研究非本征半导体样品中的霍尔效应,并确定霍尔系数和多数电荷载流子的密度。借助棱镜和光谱仪测定玻璃的折射率和柯西常数。使用单缝、双缝、圆形光圈和氦氖激光源研究衍射现象。测定线性晶体的比旋光度
开放MRI永久磁铁是开放MRI的生产基础。开放的MRI是一种磁共振成像(MRI)机器,与传统的封闭MRI机器相比,其开放率更大。它旨在:设置可能会感到幽闭恐惧症或难以躺在狭窄空间中的患者。开放设计可以在成像过程中更加舒适和灵活性。头条新闻: - 使用永久性磁化铁,例如大杆(铁磁)。- 已被扭曲成C形,两个极点靠近并平行。- 重量高达50吨铁,将其放置在具有强大地板的房间中。- 低场强度约为0.4 t至0.6特斯拉。
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。
我们在时间依赖性的gutzwiller方法中研究了哈伯德模型中的顺序参数波动。虽然在弱耦合极限中,我们发现幅度波动是短暂的,这是由于与准粒子连续的边缘的能量的退化(并且与Hartree-fock - rpa理论一致),因此这些幅度在增加相互作用后在边缘下方移动。因此,我们的计算预测了强耦合超导体,冷原子费米式冷凝物以及强烈相互作用的电荷和自旋密度波系统中的阶参数的未阻尼振幅(HIGGS)振荡。我们提出了一个实验实现,以检测未掺杂的铜层和相关材料中自旋型希格斯模式,在这些材料中,由于Dzyaloshinsky-Moriya相互作用,它可以将其与平面外铁磁激发相结合,通过Faraday效应可见。
摘要:近似计数的新兴趋势是表明尽管结果最差,但在典型的情况下,某些“低温”问题很容易。对于常规图的类别,通常表明可以通过算法利用扩展,并且由于随机常规图是良好的扩展器,概率很高,因此问题通常是可以处理的。受到独特游戏的次指数时间算法使用的方法的启发,我们为具有小型扩展条件的图形上的铁磁Potts模型开发了一种近似算法。在这样的图中,探索模型的状态空间可能不足,我们方法的新颖特征是有效地发现了一组更大的“伪地面状态”,以便探索每个伪地面状态周围的模型。
由于皮质组织和心脏等其他组织会产生电磁场 (EMF),而这些组织也会通过平衡自身的内在放电产生内在电流,因此需要足够灵敏的传感器来感知微小的电位和电位差。此外,适当的屏蔽以减少外部磁干扰也至关重要。这些试验中使用了由 Mu 金属片创建的金属屏蔽来阻挡任何潜在的外部 EMF 干扰,并且之前已由 Wiginton 等人和 Brazdzionis 等人确定其在这些参数范围内可以发挥作用[3-5]。Mu 金属是一种由镍铁制成的铁磁合金,由于其高磁导率而经常用于屏蔽电子设备免受磁场影响,从而能够吸收磁能[6]。
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
