生物复合材料面临的巨大挑战之一是提高弯曲强度和冲击强度。因此,本研究的重点是优化和参数研究天然混合纤维增强纳米复合材料。聚丙烯中的红麻/玄武岩/纳米石墨烯纤维用于增强生物复合材料样品。采用响应面法 (RSM) 研究并根据包括玄武岩纤维重量百分比、红麻纤维以及纳米石墨烯在内的多个参数提出了生物复合材料性能的数学模型。在弯曲和冲击试验下讨论了样品的性能,并使用 FESEM 图像解释了结果。根据弯曲强度和能量吸收的增加、样品重量的减轻,将参数的最优值设置为多目标,并考虑到设计目标绘制了帕累托图。研究结果表明,弯曲性能最佳的复合材料试件弯曲强度为 51.2558 MPa,由 0.8723 wt% 的玄武岩纤维、15% 的洋麻纤维和 0.76881% 的石墨烯纳米颗粒组成。此外,冲击性能最佳的试件能量吸收率为 116,809 J / m,由 8.23% 的玄武岩纤维、0.808% 的石墨烯纳米颗粒和 15% 的洋麻纤维组成。
摘要:无标签和多光子微观镜检查可以通过在癌症等疾病中提供诊断成像和手术治疗的原位工具来改变临床组织病理学。基于多光子成像的微观内镜装置的关键是光纤,用于无失真,有效地递送超短激光脉冲到样品和有效的信号收集。在这项工作中,我们研究了新的空心核心(充气)双层抗谐振纤维(DC-ARF)作为多光子微观内镜的高性能候选者。我们将DC-ARF的纤维特性与单层抗谐振纤维(SC-ARF)和固体芯纤维(SCF)进行比较。在这项工作中,而DC-ARF和SC-ARF启用低损失(<0.2 dbm-1),接近无散的激发脉冲输送(<10%脉冲宽度<10%脉冲宽度在900 nm / 1 m纤维中的脉冲宽度增加,而没有任何诱导的非线性,则在光谱宽宽和脉冲范围内导致ESCF(ecf)在> 2000 persthing> 2000 persth>> 2000 pers persth> 2000 pers ecf ins ecf ins ecf中,> 2000 e>> 2000 ex ex>> 2000 n 00 perss ef pers pers>> 2000 e;理想的光纤内窥镜需要长几米,并且应该通过纤维进行激发和收集。因此,我们在后散射的几何形状中对内窥镜兼容的1 m和3 m长度的纤维长度进行了多光子成像,其中直接收集了信号(未散布的检测)或通过纤维(降压检测)收集信号。第二次谐波图像是从钛酸钡晶体以及生物样品(小鼠尾部)中收集的。在非划定的检测条件下,ARF在图像的信噪比方面最多优于SCF 10次。显着,仅由于DC-ARF的高数值孔径(Na)为0.45和广泛的带宽(> 1 µm),才能在脱扫描的检测构型中提供图像,以进行内窥镜检查。因此,我们在不同图像收集配置下对不同光纤的系统表征和比较,确认并确定了DC-ARF的实用性,用于基于无标签的基于无标记的多光子成像。
抽象的柔性磁性材料在生物医学和软机器人的应用中具有巨大的潜力,但需要机械稳定。从机械角度来看,一种非凡的材料是蜘蛛丝。最近,已经开发了在可扩展和全水的过程中生产人工蜘蛛丝纤维的方法。如果具有磁性特性,则这种仿生人造蜘蛛丝纤维将是制造磁性执行器的绝佳候选者。在这项研究中,我们引入了磁性人造蜘蛛丝纤维,其中包含涂有Meso-2,3-二甲状腺酸糖核酸的磁铁矿纳米颗粒。复合纤维可以大量生产,并采用环保湿旋转过程。即使在高浓度(高达20%w/w磁铁矿)下,纳米颗粒也均匀地分散在蛋白质基质中,并且在室温下纤维是超磁性的。此启用了纤维运动的外部磁场控制,使适合致动应用的材料。值得注意的是,与常规的基于纤维的磁执行器相比,纤维表现出优异的机械性能和致动应力。此外,本文开发的纤维可用于创建具有自我恢复形状的宏观系统,从而强调了它们在软机器人应用中的潜力。
对网络能力的不断升级的要求催化了太空层多路复用(SDM)技术的采用。随着多核光纤(MCF)制造的持续进展,基于MCF的SDM网络被定位为可行且有前途的解决方案,可在多维光学网络中实现更高的传输能力。然而,借助基于MCF的SDM网络提供的广泛网络资源带来了传统路由,调制,频谱和核心分配(RMSCA)方法的挑战,以实现适当的性能。本文提出了一种基于基于MCF的弹性光网(MCF-eons)的深钢筋学习(DRL)的RMSCA方法。在解决方案中,具有基本网络信息和碎片感知奖励函数的新型状态表示旨在指导代理学习有效的RMSCA策略。此外,我们采用了一种近端策略优化算法,该算法采用动作面膜来提高DRL代理的采样效率并加快培训过程。用两个不同的网络拓扑评估了所提出的算法的性能,其交通负荷不同,纤维具有不同数量的核心。结果证实,所提出的算法在将服务阻断概率降低约83%和51%方面优于启发式方法和最先进的基于DRL的RMSCA算法。此外,提出的算法可以应用于具有和没有核心切换功能的网络,并且具有与现实世界部署要求兼容的推理复杂性。
用于电催化水分裂的高级材料对于可再生能源研究至关重要。在这项研究中,我们描述了一个两步反应,以制备由Pt纳米颗粒和MOS 2纳米片组成的氢进化反应(她)的电极。形态和结构的特征是多种技术,包括SEM,TEM,XRD和XPS。详细的电化学特征表明,PT纳米颗粒/MOS 2纳米片/碳纤维电极(2.03 w%pt)在其酸性电解质中表现出极好的催化活性,其超电量为5 mV(Vs.她)。估计相应的Tafel斜率为53.6 mV/dec。稳定性通过长期电势周期和扩展电解确认催化剂的特殊耐用性。â2015 Elsevier Ltd.保留所有权利。
探索短相关纤维对于评估先天性疾病的脑形态至关重要,因为白质损害对大脑区域的断开会产生与这些大脑区域损害相同的结果。33尤其是,就高信噪比和空间分辨率而言,离体扩散磁共振成像(MRI)比体内扩散MRI具有优势。34尽管一些神经影像学研究报告了AXD的MRI特征,尤其是白细胞营养性特征,2据我们所知,但没有研究评估AXD中的脑途径。因此,关于AXD中的大脑连接性知之甚少。在这项研究中,我们使用离体扩散MRI拖拉术在四个大脑中探索了全球和皮层纤维,具有AXD和两个没有神经系统疾病的大脑(以下称为“非AXD”)。
摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。
超级电容器纤维具有充电时间短、循环寿命长和功率密度高的特点,有望为基于柔性织物的电子产品供电。然而,到目前为止,只生产出了短长度的功能性纤维超级电容器。这项研究的主要目标是引入一种超级电容器纤维,以解决功能可扩展性、灵活性、包层不渗透性和长度性能等剩余挑战。这是通过自上而下的制造方法实现的,其中宏观预制件被热拉成全功能储能纤维。预制件由五个部分组成:热可逆多孔电极和电解质凝胶;导电聚合物和铜微线集电器;以及封装密封包层。该工艺生产出 100 米长的连续功能性超级电容器纤维,比之前报道的任何纤维都要长几个数量级。除了柔韧性(曲率半径~1 毫米)、防潮性(100 次洗涤循环)和强度(68 MPa)之外,这些纤维在 3.0 V 时的能量密度为 306 µWh/cm 2,在 1.6 V 时经过 13,000 次循环后电容保持率约为 100%。为了展示这种纤维的实用性,它首次采用机器编织并用作 3D 打印长丝,开辟了一个新的应用领域。
摘要。这项研究的目的是开发创新的损害响应性细菌基于细菌的自我修复纤维(以下称为生物纤维),可以将其掺入混凝土中以同时启用两个功能:(1)裂纹桥接功能以控制裂纹生长和(2)发生裂纹时发生裂纹愈合功能的裂纹功能。生物纤维由承载核心纤维,含细菌水凝胶的鞘和外部不渗透应变反应性壳涂层组成。即时浸泡制造过程与多个含有含细菌的,亲水性的前聚合物和交联试剂的储层一起使用,以开发生物纤维。亚硫酸钠用作前聚合物,通过核纤维上的离子交联产生钙藻酸盐水凝胶。在水凝胶中掺入了脂肪菌的休眠细菌(孢子)作为自我修复剂。然后,将不可渗透的聚合物涂层应用于水凝胶涂层的核纤维。使用聚苯乙烯和聚乳酸的聚合物混合物制造了不可渗透的应变反应性壳涂层材料。在这项研究中,高钙钙酸钙的高肿胀能力提供了微生物诱导的碳酸钙沉淀(MICP)化学途径所需的水。应变反应不足的涂层在混凝土铸造过程中提供了足够的柔韧性,以保护孢子和藻酸盐,并在破裂和足够的应力应变行为之前,以在发生裂缝时赋予损害反应性以激活MICP。研究了开发的生物纤维的行为,水凝胶的肿胀能力,壳涂层的不渗透性,孢子铸造的生存能力和MICP活性。
摘要:在这项工作中,我们专注于基于PLA的电纺纤维,Efibers的生物活性和抗菌行为,并用MGO和MG(OH)2纳米颗粒(NPS)增强。在形态,FTIR,XRD和视觉外观方面遵循了基于PLA的efiber的演变。生物活性是根据28天后的羟基磷灰石生长(被认为是T28)浸入模拟体液中的T28。特别是,在两个系统中浸入T14后,浸入SBF后的生物矿化过程。通过增加两个NP的量来增加沉淀晶体的数量。还以T28浸入SBF后的CA/P摩尔比,表明沉淀的晶体的化学成分,表明在两种增强的e纤维表面上都存在羟基磷灰石。此外,观察到基于PLA的efiber的平均直径的降低,在浸入SBF的28天后,纯PLA和PLA的平均直径分别达到了46%和60%的最大降低46%和60%。在基于PLA的电纺纤维中MGO和MG(OH)2 NP的抗菌行为对针对大肠杆菌,大肠杆菌,作为革兰氏阴性细菌,以及金黄色葡萄球菌,金黄色葡萄球菌,作为对革兰氏蛋白抗体的细菌,均具有革兰氏蛋白抗体的活性。最高浓度的MGO和MG(OH)2 NP的2%和34±6%。
