无无无学期2 DSA5005 - 多元统计分析DSA5006 - 机器学习DSA5007 - 大数据和云计算DSA5011 - AI&DEEP LEAFTIVE,选择性i
在基于测量的量子计算 (MBQC) 中,计算是通过对纠缠态进行一系列测量和校正来完成的。流和相关概念是描述校正对先前测量结果的依赖性的强大技术。我们引入了基于流的量子计算方法,该方法具有连续变量图状态,我们称之为 CV-流。这些方法受到量子比特 MBQC 的因果流和 g-流概念的启发,但不等同于它们。我们还表明,具有 CV-流的 MBQC 在无限压缩极限下可以很好地近似任意幺正,从而解决了无限维设置中不可避免的收敛问题。在开发我们的证明时,我们提供了一种将 CV-MBQC 计算转换为电路形式的方法,类似于 Miyazaki 等人的电路提取方法,以及一种基于 Mhalla 和 Perdrix 的量子比特版本在存在 CV 流时查找 CV 流的有效算法。我们的结果和技术自然扩展到具有素数局部维度的量子位元的 MBQC 量子计算的情况。
摘要 - 近年来,心血管疾病引起了研究人员的重大关注,因为它是全球死亡的主要原因。本文介绍了一种分类方法,该方法采用了优化算法来提高预测各种性别和年龄段的心血管疾病发展的准确性。患者数据集通常包含大量无关,多余或嘈杂的特征,这可能会阻碍预测的准确性。为了解决这个问题,我们提出了流动方向算法(FDA),该算法选择了疾病的最相关特征以提高分类精度率。在预测阶段,我们将支持向量机(SVM)与流方向优化算法(FDA)相结合,以识别最相关的功能。为了增强分类结果,本研究研究了FDA,OFDA,遗传算法(GA)和粒子群优化(PSO)算法与K-Nearest邻居(KNN)和SVM分类算法的组合。使用准确性,召回,精度和选定特征比例作为度量来评估所提出的算法的性能。使用三个数据集比较了基于SVM和KNN的算法:心力衰竭临床数据集(HFCD),心脏数据集(HD)和心脏病预测数据集(HDPD)从UCI存储库中获得。实验结果表明,与FDA或OFDA优化算法结合使用时,SVM和KNN算法表现更好。
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
出于地貌理由放置了另一个可能的入侵地点,但是当人们认识到奥林巴斯蒙斯山顶附近的一些熔岩流也不一致[5]。mogi风格的分析模型用于检验[5]的假设,即这种不一致是由于Caldera Complex的东南部东南部的岩浆体的通货膨胀引起的,虽然这种岩浆系统是合理的,但观察到的不和谐模式可以更好地归因于East [3,6,6]。不幸的是,尽管这些最初的见解令人兴奋,并支持了山顶附近存在岩浆岩体的身体的观念,但可以从Mogi式的方法中推断出来的,因为该方法无法考虑关键元素,例如诸如大厦大厦的详细表面形态,岩浆身体的几何形状,是否表面故障(是否
•流程术的基础:技术的原理,设计一个用于细胞仪分析的面板,数据分析工具(门,门控层次结构,统计,统计,点图,直方图),设置仪器,定量细胞仪和质量控制。
花朵中寄生着各种附生细菌群落,这些细菌会影响花朵的功能、传粉媒介相互作用以及植物的整体适应性。然而,人们对这些细菌的丰度如何随着花朵的衰老而变化以及这些变化与花朵寿命的关系知之甚少。在本研究中,我研究了从开花期(花蕾开放到花朵)到衰老期(花朵枯萎)的花朵生命周期中细菌丰度的变化,并探索了对花朵寿命的潜在影响。我们通过确定两个野外季节中 8 种植物花朵的平均衰老年龄来追踪花朵的年龄。花蕾在开花前被标记,使我们能够从花蕾开放的时刻(标志着花朵开花的开始)到可见枯萎的开始(表明衰老的开始)追踪花朵的寿命,我们通过平板计数确定了花朵表面可培养细菌的丰度,并测量了环境温度、湿度和降水如何影响这些模式。我们的结果表明,随着花朵的衰老,它们会积累细菌,寿命较短的花朵通常比寿命较长的花朵积累细菌的速度更快。然而,与预期相反,附生细菌的丰度与花朵寿命无关,这表明附生细菌可能不会直接影响花朵寿命。相反,环境条件起着重要作用;温度升高与细菌丰度降低有关,而湿度升高则支持细菌丰度增加和花朵寿命延长。这些发现表明,花朵上的细菌丰度可能受外部因素影响,而对花朵寿命没有直接影响,这凸显了花朵衰老与环境条件之间复杂的相互作用。