1利物浦大学感染学院临床感染系,兽医与生态科学研究所,兽医与生态科学研究所,罗纳德·罗斯大厦系统,分子与综合生物学,利物浦大学,生物科学大楼,皇冠街,利物浦,英国4 4 4 4章,诺拉·本瓦尔·本特·阿卜杜勒拉赫曼公主学院,利雅得,11671年,沙特阿拉伯,11671年,阿拉伯人,11671年,阿拉伯人5英国利物浦的利物浦热带医学学校7传染病系,Alder Hey儿童NHS基金会信托基金会,英国利物浦Eaton Road * *作者。
摘要 - 书中检索是一个代表性的反问题,其中仅使用信号的傅立叶变换的测量幅度才能恢复信号。深度学习的算法比标准算法更令人满意地重建,例如交替的投影处理和凸放松方法。但是,他们通常无法重建细节或纹理。最近,已经利用扩散模型来解决傅立叶相检索问题。这些算法提供了现实的结果,但是由于生成模型的性质,可以在重建中显示实际图像中的不存在细节。为了应对这些问题,我们提出了一种新型算法,称为“红色强调”,结合了差异扩散采样AP-ap-aper和相位检索的凸松弛方法。尤其是,用于相位检索的经典优化问题被用作额外的正则化,以在变化采样过程中正确重建相位信息。我们的实验结果证实,与现有的傅立叶相检索算法相比,所提出的红色强调可提供定性和定量改善的性能。索引术语 - 较高的相位检索,扩散模型,通过deno的调节,凸松弛
快速傅里叶变换 (FFT) 广泛应用于各种信号处理算法,这些算法通常需要高吞吐量和可配置的 FFT 大小。本应用说明展示了 Xilinx ® Versal™ AI Core 设备中 AI 引擎阵列上的高效 FFT 实现。所提出的架构利用 AI 引擎阵列的分组交换功能,将 4096 个输入样本分发到四个 AI 引擎,在其中执行 512 点或 1024 点 FFT,然后使用另一个 AI 引擎根据控制字对 2048 点和 4096 点 FFT 的数据进行后处理,该控制字逐块指定 FFT 大小和 FFT/IFFT 模式。仿真结果证实,5x2 AI 引擎阵列中的两个 FFT 模块实现了 3.7 GSPS 的吞吐量,足以服务于 24-32 个 100 MHz 带宽的天线。
在科学和工程场中,快速准确的湍流预测非常重要。在本文中,我们研究了隐式U-NET增强的傅立叶神经操作员(IUFNO),以稳定地预测三维(3D)湍流流的长期动力学。训练有素的IUFNO模型在三个摩擦雷诺数的粗网格的大涡模拟(LES)中进行了测试:re τ≈180、395和590。所采用的近壁网格比壁溶解的LES的一般要求更明显。与原始的傅立叶神经操作员(FNO),隐式FNO(IFNO)和U-NET增强的FNO(UFNO)相比,IUFNO模型具有更好的长期预测能力。数值实验表明,IUFNO框架在预测各种流量统计统计和结构的预测中,超过了传统的动态Smagorinsky模型和壁适应的本地涡流粘度模型,包括平均值和功能,包括均值和流动性速度,概率密度的功能(PDFS)和关节功能(pdfs)和关节效率。 pro文件,动能谱和Q标准(涡旋结构)。同时,训练有素的IUFNO模型在计算上比传统的LES模型快得多。因此,IUFNO模型是快速预测壁构成的湍流的有希望的方法。
阿尔茨海默病 (AD) 是全球范围内日益严重的重大公共卫生挑战。早期准确诊断对于有效干预和治疗至关重要。近年来,人们对利用脑电图 (EEG) 来提高 AD 检测率的兴趣日益浓厚。本文重点介绍图信号处理 (GSP) 技术的应用,使用图离散傅里叶变换 (GDFT) 分析 EEG 记录以检测 AD,方法是采用多种机器学习 (ML) 和深度学习 (DL) 模型。我们基于公开的 EEG 数据评估我们的模型,该数据包含 88 名患者,分为三组:AD、额颞叶痴呆 (FTD) 和健康对照 (HC)。痴呆与 HC 的二元分类最高准确率达到 85%(SVM),而 AD、FTD 和 HC 的多类分类最高准确率达到 44%(朴素贝叶斯)。我们提供了用于检测 AD 的新型 GSP 方法,并形成了进一步实验的框架,以在多种数据模式的其他神经退行性疾病背景下研究 GSP,例如重度抑郁症、癫痫和帕金森病中的神经影像数据。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
摘要 使用 Mermin 多项式可以检测量子系统的非局域性和由此产生的纠缠。这为我们提供了一种研究量子算法执行过程中非局域性演变的方法。我们首先考虑 Grover 的量子搜索算法,注意到在算法执行过程中,当接近预定状态时,状态的纠缠度达到最大值,这使我们能够搜索单个最优 Mermin 算子,并在整个 Grover 算法执行过程中使用它来评估非局域性。然后还使用 Mermin 多项式研究量子傅里叶变换。在每个执行步骤中搜索不同的最优 Mermin 算子,因为在这种情况下没有任何迹象表明我们能够找到最大程度地违反 Mermin 不等式的预定状态。将量子傅里叶变换的结果与之前使用凯莱超行列式进行纠缠研究的结果进行了比较。由于我们提供的是结构化且有文档记录的开源代码,因此所有的计算都可以重复。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
能带结构各点之间的散射矢量。在这方面,傅里叶变换的 QPI 图提供了拓扑绝缘体存在的首批实验证据之一,[4]因为它揭示了背向散射矢量处强度的“缺失”,正如理论所预测的那样。从理论的角度来看,QPI 图的计算主要基于模型方法,例如在拓扑绝缘体表面,[5]其中表面能带结构可以用简单的模型哈密顿量来近似。然而,一般而言,基于密度泛函的方法对于表面电子结构的实际描述是必需的,特别是杂质势,其中杂质周围的电荷弛豫在正确描述散射相移中起着重要作用。密度泛函计算的一个困难是缺陷引起的密度振荡范围非常大,可以达到几十甚至几百纳米,因此超晶胞方法实际上无法达到这个极限。这些挑战只能通过从头算格林函数嵌入方法来解决,比如 Korringa-Kohn-Rostoker(KKR)方法。作为一个应用的例子,我们参考了 Lounis 等人 [6] 对 Cu(111) 和 Cu(001) 表面上的 QPI 的计算,这是由于表面下埋藏着一个孤立杂质。这些结果表明,利用格林函数技术可以在相当大的表面积上对 QPI 图进行从头算计算。然而,对于傅里叶变换的 QPI 图,直接用格林函数卷积来表示结果是可行的[7],避免了计算大表面积中实空间图的中间步骤。在本文中,我们将探讨这个问题,并给出它在拓扑绝缘体领域的应用。在第 2 节中,我们概述了 KKR 方法中实空间和傅里叶变换 QPI 映射的形式。此外,我们讨论了多杂质实际情况的傅里叶变换 QPI,并认为多杂质问题可以用单杂质结果很好地近似。我们还讨论了扩展的联合态密度方法 (exJDOS)。在第 3 节中,我们将我们的形式应用于具有表面杂质的拓扑绝缘体 Bi 2 Te 3。这在 JuKKR 代码包中实现。[8] 最后,我们在第 4 节中进行了总结。
人类的情绪状态可以自然转变,并可通过面部表情、声音或身体动作识别,这些都受所接受的刺激影响。然而,即使经历了喜悦、悲伤或其他感觉,每个人也并非都能表达情绪。从生物医学角度来看,情绪会影响脑电波活动,因为持续运作的脑细胞通过电脉冲进行交流。因此,脑电图 (EEG) 用于捕获来自脑信号的输入、研究脉冲并确定人类情绪。检查通常包括观察一个人对给定刺激的反应,但即时结果尚无定论。在本研究中,相关分类为正常、专注、悲伤和震惊。通过使用名为 Neurosky Mindwave 的单通道脑电图记录了 50 名受试者的原始脑电波数据。同时,在通过听音乐、看视频或阅读书籍刺激候选人的思维的同时进行评估。采用快速傅立叶变换 (FFT) 方法进行特征提取,并采用 K-最近邻 (K-NN) 对脑脉冲进行分类。参数 k 的值为 15,平均分类准确率为 83.33%,而专注情绪状态的最高准确率为 93.33%。Neurosky Mindwave 与 FFT 和 KNN 技术相结合,是潜在的分析解决方案,有助于增强对人类情绪状况的识别。