癌症将直接影响超过三分之一人口的生活。DNA损伤反应 (DDR) 是一个复杂的系统,涉及损伤识别、细胞周期调控、DNA 修复以及最终的细胞命运决定,在癌症病因和治疗中发挥着核心作用。涉及 DDR 靶向的两种主要治疗方法包括:采用抗癌基因毒性剂的组合疗法;以及合成致死,利用散发性 DDR 缺陷作为癌症特异性治疗的机制。尽管许多 DDR 蛋白已被证明“无法用药”,但基于片段和结构的药物发现 (FBDD、SBDD) 已推进了治疗剂的鉴定和开发。FBDD 已促成 4 种药物(另有约 50 种药物处于临床前和临床开发阶段),而据估计,SBDD 已促成 200 多种 FDA 批准药物的开发。基于蛋白质 X 射线晶体学的片段库筛选,特别是针对难以捉摸或“无法用药”的靶标,可以同时生成命中结果以及蛋白质-配体相互作用和结合位点(正构或变构)的详细信息,从而为化学可处理性、下游生物学和知识产权提供信息。使用一种新型的高通量基于晶体学的片段库筛选平台,我们筛选了五种不同的蛋白质,命中率约为 2 e 8%,晶体结构约为 1.8 至 3.2 Å。我们考虑了当前的 FBDD/SBDD 方法和一些设计针对 DDR 核酸酶减数分裂重组 11(MRE11,又名 MRE11A)、无嘌呤/无嘧啶核酸内切酶 1(APE1,又名 APEX1)和 flap 核酸内切酶 1(FEN1)的抑制剂的示例性结果。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
癌症将直接影响超过三分之一人口的生活。DNA损伤反应 (DDR) 是一个复杂的系统,涉及损伤识别、细胞周期调控、DNA 修复以及最终的细胞命运决定,在癌症病因和治疗中发挥着核心作用。涉及 DDR 靶向的两种主要治疗方法包括:采用抗癌基因毒性剂的组合疗法;以及合成致死,利用散发性 DDR 缺陷作为癌症特异性治疗的机制。尽管许多 DDR 蛋白已被证明“无法用药”,但基于片段和结构的药物发现 (FBDD、SBDD) 已推进了治疗剂的鉴定和开发。FBDD 已促成 4 种药物(另有约 50 种药物处于临床前和临床开发阶段),而据估计,SBDD 已促成 200 多种 FDA 批准药物的开发。基于蛋白质 X 射线晶体学的片段库筛选,特别是针对难以捉摸或“无法用药”的靶标,可以同时生成命中结果以及蛋白质-配体相互作用和结合位点(正构或变构)的详细信息,从而为化学可处理性、下游生物学和知识产权提供信息。使用一种新型的高通量基于晶体学的片段库筛选平台,我们筛选了五种不同的蛋白质,命中率约为 2 e 8%,晶体结构约为 1.8 至 3.2 Å。我们考虑了当前的 FBDD/SBDD 方法和一些设计针对 DDR 核酸酶减数分裂重组 11(MRE11,又名 MRE11A)、无嘌呤/无嘧啶核酸内切酶 1(APE1,又名 APEX1)和 flap 核酸内切酶 1(FEN1)的抑制剂的示例性结果。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要:分类为六个超家族的解旋酶是利用从ATP水解到重塑DNA和RNA底物的能量的机械酶。这些酶在各种细胞过程中具有关键作用,例如翻译,核糖体组装和基因组维持。解旋酶,并且许多病毒表达的旋转酶是其致病性所必需的。因此,解旋酶是化学探针和治疗剂的重要靶标。但是,开发针对构象动力学高构酶的化学抑制剂的化学抑制剂非常具有挑战性。我们认为,在化学蛋白质组学研究中使用的电力“侦察片段”可以利用用于开发共价抑制剂的解旋酶的抑制剂。我们采用了一种功能优先的方法,将酶试验与对映体探针对和质谱分析相结合,以开发一种共价抑制剂,该抑制剂有选择地靶向SARS-COV-2 NSP13中的变构位点,一种超级家庭-1解旋酶。此外,我们证明了侦察片片段抑制了与基因组维持有关的两个人类超家族酶BLM和WRN的活性。一起,我们的发现提出了一种发现在构象动态机械酶中发现共价抑制剂起点和可药物变构位点的方法。
单域抗体片段 (sdAbs) 是靶向 a 粒子治疗的理想选择,尤其是使用 211 At 时,因为它们在肿瘤中快速积累并从正常组织中清除。在这里,我们评估了这种策略的治疗潜力,使用 5F7 和 VHH_1028 — 2 个 sdAbs,它们以高亲和力结合人类表皮生长因子受体 2 型 (HER2) 的结构域 IV。方法:使用 N-琥珀酰亚胺基-3-211 At-astato-5-胍基甲基苯甲酸酯 (iso-211 At-SAGMB) 标记 HER2 特异性 sdAbs 和 HER2 无关的 VHH_2001。比较了 iso-211 At-SAGMB-5F7 和 iso-211 At-SAGMB-VHH_2001 对 HER2 表达的 BT474 乳腺癌细胞的细胞毒性。在皮下移植 BT474 异种移植瘤的小鼠中进行了三项实验,以评估单剂量 iso-211 At-SAGMB-5F7(0.7 – 3.0 MBq)、iso-211 At-SAGMB-VHH_1028(1.0 – 3.0 MBq)以及 iso-211 At-SAGMB-VHH_1028 和 iso-211 At-SAGMB-VHH_2001(1.0 MBq)的治疗效果。结果:暴露于 iso-211 At-SAGMB-5F7(D 0 5 1.313 kBq/mL)后,BT474 细胞的克隆形成存活率降低,而 iso-211 At-SAGMB-VHH_2001 无效。使用 211 At 标记的 HER2 特异性 5F7 和 VHH_1028 观察到剂量依赖性肿瘤生长抑制,但使用 HER2 无关的 VHH_2001 则未观察到。在 3.0 MBq 剂量下,使用 iso-211 At-SAGMB-5F7 治疗的 4 只小鼠中有 3 只出现肿瘤完全消退,使用 iso-211 At-SAGMB-VHH_1028 治疗的 11 只小鼠中有 8 只出现肿瘤完全消退;中位生存期分别延长了 495% 和 414%。结论:将快速内化、高亲和力的 HER2 靶向 sdAb 与 iso-211 At-SAGMB 残留修复剂相结合,是一种针对 HER2 表达癌症的靶向 α 粒子治疗的有前途的策略。
摘要:蛋白质 - 蛋白质相互作用(PPI)对于许多蛋白质的功能至关重要。异常PPI有可能导致疾病,这使PPI有望成为药物发现的靶标。人类Interactome参考数据库中有超过64,000个PPI,但是迄今为止,很少有PPI调节剂被批准用于临床使用。PPI特异性疗法的进一步开发高度取决于结构数据的可用性以及可靠的计算工具的存在,以探索两种相互作用的蛋白质之间的接口。碎片分子轨道(FMO)量子力学方法提供了一种全面且计算的廉价平均值,可以识别出在蛋白质蛋白质界面上发生的分子相互作用的强度(Kcal/mol)和化学性质(静电或疏水性)。我们已经集成了FMO和PPI探索(FMO-PPI),以识别对蛋白质 - 蛋白质结合至关重要的残基(热点)。为了验证这种方法,我们已将FMO-PPI应用于代表几种不同蛋白质亚家族的蛋白质 - 蛋白质复合物的数据集,并获得了与已发布的诱变数据一致的FMO-PPI结果。我们观察到临界PPI可以分为3个主要类别:两种蛋白质(分子间)的残基之间的相互作用,同一蛋白质(分子内)中的残基之间的相互作用以及两种由水分子(水气囊)介导的两个蛋白质的残基之间的交互。我们通过证明如何利用FMO-PPI获得的这些信息来支持基于结构的PPI调节剂(SBDD-PPI)的药物设计,从而扩展了发现。
洛斯阿拉莫斯中子科学中心测量了 233 U 裂变的特性,入射中子能量从热能到 40 MeV。使用带有弗里希格栅的双电离室同时观察到碎片。使用基于质量和动量守恒的双能量分析法确定了释放的平均总动能和碎片质量产额。使用 232 Th 验证了实验方法,并使用 235 U 的热中子诱导裂变校准了绝对能量。这项工作结合了多机会裂变通道截面和裂变模型的新应用,以解释高能下瞬时中子发射引入的复杂性,并将结果扩展到比以前测量的更高的入射中子能量。必须对这些参数进行准确的实验测量,以更好地了解钍燃料循环中同位素的裂变过程。
自 20 世纪 50 年代以来,核火箭主要由洛斯阿拉莫斯国家实验室研发,以提供更快的太空旅行方法。(Bussard 和 DeLauer,1958 年;Dewar,1974 年;Borowski,1987 年;Dewar,2007 年)。这些技术利用核设计,以传统方式将热量从密封核心传输到液氢膨胀器或热电子转换器。从 20 世纪 80 年代开始,一种更有效的核能转换设计出现在火箭中(Haslett,1995 年;Lieberman,1992 年),当火箭远离地球大气层时,核心就会暴露在外,直接使用核碎片推力。从 2011 财年到 2014 财年,NASA 先进概念研究所研究了裂变碎片火箭发动机 (FFRE)。 (Werka 等人,2012 年;Chapline,1988 年;Chapline 等人,1988 年;Chapline 和 Matsuda,1991 年)。FFRE 会以极高的比冲(I SP)将裂变碎片的动量直接转化为航天器动量。I SP 是衡量发动机使用燃料产生推力的效率的指标。对于火箭技术,I SP 定义为每单位重量(地球上)推进剂在时间内的积分推力。(Benson,2008 年;Sutton 和 Biblarz,2016 年)。I SP 由公式 1 给出
©作者2020。由牛津大学出版社出版,代表《分子细胞生物学杂志》,IBCB,SIBS,CAS。这是根据Creative Commons Attribution许可条款(http://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
支持共价抑制剂药物发现/设计的工具的最新进展以及奥希替尼和伊布替尼等重磅药物的成功,导致人们对“亲电试剂优先”共价药物发现的兴趣日益浓厚。通过完整蛋白质质谱 (MS) 进行共价片段筛选已被证明是一种强大的工具,KRAS(G12C) 抑制剂的发现证明了这一点 [1]。支持共价片段筛选的其他检测方法,包括通过 GSH 检测评估弹头反应性以及通过蛋白酶消化和肽图分析识别结合位点,可进一步优化命中率。共价抑制是时间依赖性的,因此效力的首选测量方法是二级速率常数 kinact/Ki,而不是 IC50。