可再生能源 (RES) 已成为电网不可或缺的组成部分,但它们的整合带来了系统惯性损失以及负载需求与发电能力不匹配等挑战。这些问题危及电网稳定性。为了解决这个问题,提出了一种有效的方法,将增强型负载频率控制 (LFC)(即模糊 PID-TID µ)与受控储能系统(特别是受控氧化还原液流电池 (CRFB))相结合,以减轻 RES 整合带来的不确定性。该策略的参数优化是使用小龙虾优化算法 (COA) 实现的,该算法以其全局优化能力以及探索与利用之间的平衡而闻名。与传统控制器(PID、FO-PID、FO-(PD-PI))的性能评估证实了所提出的方法在 LFC 中的优越性。在各种负载扰动、高可再生能源渗透率和通信延迟下进行的广泛测试确保了其在最大限度地减少中断方面的有效性。使用标准化 IEEE 39 总线系统进行验证进一步证明了其在应对大量可再生能源渗透的电网中的效率。总之,该综合战略为适应日益增加的可再生能源利用的现代电力系统提供了强有力的解决方案。
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
摘要 — 电动机广泛应用于各个行业,根据其应用,电动机需遵守特定的噪声标准。尽管无刷电动机的性能优于有刷电动机,但由于其机械、电气和电子元件,无刷电动机会产生噪声。本研究调查了通过驱动器改变开关频率对外转子无刷直流电动机噪声的影响。对具有不同开关频率的表面贴装磁性无刷电动机进行了测试,并提供了有关控制无刷电动机的控制板的详细信息。在消声静室中使用 dB 计进行了声音强度和谐波测量。改变开关频率也会影响电动机速度,因此在研究期间进行了两次不同的测量。在一次测试中,BLDC 电动机速度保持恒定,而在另一次测试中,占空比保持恒定以进行测量。观察到开关频率的增加以降低电动机噪声。然而,这种增加也会导致开关元件损耗,从而导致温度升高。通过调整占空比并改变开关频率,外转子无刷直流电动机的速度保持恒定。在 12-28 kHz 范围内增加开关频率可降低测量到的噪声,同时导致不同频率范围内的温度升高。研究结果表明,现有的 BLDC 电机和驱动器系统在 16-18 kHz 范围内的噪声和温度方面具有最佳性能。
已经进行了各种研究来减少脑电图中的伪影。改进脑带记录技术、使用计算机方法去除伪影以及使用各种滤波器都是提高脑电波记录质量的方法 [3, 7-8]。在 Lee One 等人的干预下,使用自动系统去除伪影,其灵敏度为 82.4%,特异性为 83.3%,并在很大程度上消除了伪影。该方法的灵敏度和特异性在很大程度上类似于由受过训练的操作员去除伪影 [9]。在另一项研究中,肉毒杆菌毒素注射用于减少肌源性伪影,这显著减少了肌源性伪影 [10]。去除肌肉伪影已被证明可将癫痫发作定位的灵敏度从 62% 提高到 81%,其最佳效果是在具有中度至重度肌肉伪影的发作带中。去除伪影可以更早地检测到鱼鳞病改变并检测到隐藏在伪影中的物品 [6]。另一方面,也有研究表明,使用一些方法和计算机程序去除伪影的效度较低[11]。
1。简介MIMO-OTF可以进一步提高频谱效率,而OFDM则提供了易于实现,对多径褪色和窄带干扰的强大弹性以及出色的光谱效率。OTFS调制是一种有前途的方法,用于确保在人们四处走动的情况下确保可靠的通信。无线通信自1960年代以来一直在迅速发展,其中LTE是新产生无线传输框架的主要方法之一。LTE高级(LTE-A)框架使用MIMO和OFDM方法来实现最大数据速率通信。MIMO在当前无线框架中的动机是改善容量受限的系统,质量和包容性改进,滥用长期评估以扩大限制,包含范围以及无线框架的信息传输可靠性[1]。普遍的无线框架之一是无线局域网(WLANS),其互连笔记本电脑,个人数字助手(PDA),手机和其他手持式小工具如图1.LTE是一种无线和移动通信技术,与其他技术相比,它具有新功能和优势[2]。其主要目标包括提高下行链路和上行链路数据速率,灵活的数据传输能力,提高幽灵熟练的能力以及提高客户端的限制。lte/lte-a正在将过境中的沟通进步提高到5G传输方案,如图2所示。_____________________________ *通讯作者:ali.j.r@alkafeel.edu.iq
摘要 随着基于逆变器的可再生能源 (IBR) 的快速整合,岛屿电力系统的能源脱碳进程不断加快。此类系统的独特之处在于,由于潜在的发电中断或可再生能源不可预测导致的不平衡,频率会快速变化,这对在没有外部支持的情况下维持频率最低点提出了重大挑战。本文提出了一种具有数据驱动的频率最低点约束的机组组合 (UC) 模型,包括频率最低点或最小惯性要求,有助于限制发电机严重停运后的频率偏差。这些约束是使用线性回归模型制定的,该模型利用了现实世界的全年发电调度和动态模拟数据。通过在实际岛屿电力系统中使用历史天气数据进行为期一年的模拟,验证了所提出的 UC 模型的有效性。本文还评估了从实际系统运行假设中得出的替代最小惯性约束。研究结果表明,与替代的最小惯性约束相比,所提出的频率最低点约束显著改善了高光伏 (PV) 渗透水平下的系统频率最低点,尽管发电成本略有增加。
低惯性电力系统中的系统运营商通常必须削减可再生能源 (RES),并采用严格的低频负荷削减 (UFLS) 方案,以确保在发生导致发电损失的事件后频率安全。这种方法限制了系统中 RES 的最大渗透率,并导致负荷损失。为了解决这些问题,可以使用快速频率响应 (FFR) 方案来限制扰动后的频率最低点,并减少对 RES 削减和 UFLS 的需求。本文深入探讨了扰动后动能 (KE)、频率遏制储备 (FCR) 和最低点之间的相互作用,这些是导致 RES 削减的驱动机制。然后,它分析了 FFR 对最低点的影响及其缓解 RES 削减问题的能力。低惯性孤岛塞浦路斯动态模型用于量化结果并展示对实际系统的影响。
抵抗的演变仍然是现代医学从传染病到癌症的主要挑战之一。在没有治疗的情况下,许多这些抗性限制突变通常会带来很大的健身成本。结果,我们希望这些突变体会进行纯化的选择并迅速灭绝。然而,从抗药性疟疾到非小细胞肺癌(NSCLC)和黑色素瘤的靶向癌症疗法经常观察到先前存在的抗药性。这种明显悖论的解决方案已从空间救援到简单的突变供应论点采取了几种形式。最近,在进化的耐药NSCLC细胞系中,我们发现祖先和抗性突变体之间的频率依赖性生态相互作用可以在没有治疗的情况下改善抗药性成本。在这里,我们假设该频率依赖性的生态相互作用在普遍的抗药性中起着主要作用。我们将数值模拟与可靠的分析近似结合在一起,以提供严格的数学框架,以研究频率依赖性生态相互作用对现有抗性进化动力学的影响。首先,我们发现生态相互作用显着扩大了我们期望观察到的抗药性的参数制度。接下来,即使突变体与祖先之间的积极生态相互作用很少见,这些抗性克隆也提供了进化抗性的主要模式,因为即使是弱的正相互作用也会导致明显更长的灭绝时间。然后,我们发现,即使在仅突变供应供应就足以预测预先存在的抗性的情况下,频率依赖性的生态力仍然会造成强大的进化压力,从而选择越来越积极的生态效应(负频率依赖性选择)。最后,我们从基因上设计了几种最常见的临床观察到的NSCLC靶向疗法的抗药性机制,这是一种臭名昭著的治疗疗法,以预先存在耐药性。我们发现每个工程突变体都与祖先都表现出积极的生态相互作用。整体上,这些结果表明,频率依赖性的生态效应在塑造现有抗性的进化动力学中起着至关重要的作用。