在土壤环境中,出于自适应原因,真菌VOC被认为是发展的,以促进交流并充当许多功能的发展信号。通过土壤的气态和液体相通过气体和液体相位的波动性和扩散性,赋予它们充当信号分子的能力,能够在多孔空间中易于移动,从而在长距离上介导通信。此外,真菌产生的不同化合物具有修改植物产生的VOC的特征,以使它们可以改善对害虫和病原体的攻击或改善对不同非生物压力条件的反应的防御[3]。取决于植物收到真菌VOC的刺激的方式,数量和力矩,反应可能会有所不同。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
摘要:Sporothrix Schenckii是孢子形成的病因学药物之一,孢子形成是一种皮肤和皮下感染。与其他与其他相关的真菌一样,其细胞壁是一种分子支架,用于显示毒力因子,例如保护性色素,水解酶和粘附素。具有粘合特性的细胞壁蛋白已被报道,但仅鉴定并表征了其中的少数。 其中之一是GP70,这是一种大量的细胞壁蛋白,主要在酵母样细胞的表面上发现。 由于该蛋白质在3-羧基,顺式 - 摩酸环化酶的活性中也具有作用,并且其丰度在高毒性菌株中较低,因此其在Sporothrix - 主机相互作用中的作用尚不清楚。 在这里,产生了一组GP70溶的菌株,并进行了分子和表型表征。 结果表明,较高沉默水平的突变体显示,对层粘连蛋白和纤维蛋白原,酶活性的粘附量显着降低,以及细胞壁组成中的缺陷,其中包括降低甘露糖,鼠李糖和蛋白质含量,并伴随着β-1,3 -glucans的增量。 细胞壁n连接的聚糖含量显着降低。 这些菌株在与dectin-1-,TLR2-和TLR4依赖性刺激中与人外周血单核细胞相互作用时会诱导较差的TNFα和IL-6水平。 IL-1β和IL-10水平明显更高,并通过Dectin-1刺激。 在高度GP70溶剂中,人类粒细胞对嗜中性粒细胞细胞外陷阱的刺激增加。具有粘合特性的细胞壁蛋白已被报道,但仅鉴定并表征了其中的少数。其中之一是GP70,这是一种大量的细胞壁蛋白,主要在酵母样细胞的表面上发现。由于该蛋白质在3-羧基,顺式 - 摩酸环化酶的活性中也具有作用,并且其丰度在高毒性菌株中较低,因此其在Sporothrix - 主机相互作用中的作用尚不清楚。在这里,产生了一组GP70溶的菌株,并进行了分子和表型表征。结果表明,较高沉默水平的突变体显示,对层粘连蛋白和纤维蛋白原,酶活性的粘附量显着降低,以及细胞壁组成中的缺陷,其中包括降低甘露糖,鼠李糖和蛋白质含量,并伴随着β-1,3 -glucans的增量。细胞壁n连接的聚糖含量显着降低。这些菌株在与dectin-1-,TLR2-和TLR4依赖性刺激中与人外周血单核细胞相互作用时会诱导较差的TNFα和IL-6水平。IL-1β和IL-10水平明显更高,并通过Dectin-1刺激。在高度GP70溶剂中,人类粒细胞对嗜中性粒细胞细胞外陷阱的刺激增加。此外,这些突变体在无脊椎动物模型Galleria Mellonella中显示出毒力衰减。我们的结果表明,GP70是具有粘附素特性的多功能蛋白,是导致3-羧基-CIS-麦氨酸环酸酯环酸酯酸酯的活性,并且与S. schenckii - 主机相互作用相关。
*分子病原体和害虫检测实验室没有处理任何或可能包含人类和动物致病真菌的样品。此类样本将被丢弃。用于蘑菇和细长的模具,只提交新鲜而不是腐烂的样品。将每个样品包装在纸袋中。请勿加水或湿纸巾。样本不足可能会阻止及时测试和报告。
*电子邮件:endusharma@gmail.com 摘要 牛粪 (CD) 或牛粪是牛科动物的排泄物,几个世纪以来牛粪传统上被用作印度次大陆农业的有机肥料。牛粪的成分约 80% 是水,还有一些未消化的植物材料,这些材料含有大量有机物质,这是由于牛粪微生物群分泌的抗菌代谢物。牛粪肥料可增强土壤矿物质,还可增强植物对害虫和植物疾病的抵抗力。牛粪 (CD) 微生物群用于农业领域,例如生物防治、促进生长、有机肥料、磷溶解。 CD 已用于其他几种与环境有关的应用,如生物降解、生物修复和重金属生物吸附等。CD 具有丰富的微生物多样性,包含近 60 种细菌(芽孢杆菌属、乳酸杆菌属、棒状杆菌属)、真菌(曲霉菌、木霉菌)、100 种原生动物和酵母菌(酿酒酵母和念珠菌)。在本研究中,我们研究了牛粪的微生物负荷。用营养琼脂、血琼脂和麦康凯琼脂从牛粪中分离细菌。萨氏葡萄糖琼脂 (SDA) 用于真菌分离。根据菌落特征、形态、革兰氏染色、显微镜检查和生化测试对分离的细菌进行鉴定。牛粪的微生物负荷以样品的 cfu/gm 计算。在稀释度 10 -3 时细菌种群数量达到最大,范围为 170×10 -4 cfu/ml。从牛粪中分离出共 20 种分离菌,包括革兰氏阴性杆菌、革兰氏阳性球菌和革兰氏阳性杆菌大肠杆菌、微球菌属和芽孢杆菌属。使用 Sabouraud 葡萄糖琼脂 (SDA) 进行真菌分离。在稀释度 10 -2 时真菌种群数量达到最大,范围为 35×10 -3 cfu/ml,观察到了黑曲霉和烟曲霉的不同真菌菌落。这些有益微生物将用于进一步的研究工作。关键词:牛粪,微生物负荷,细菌,真菌,微生物组。1. 引言在印度,养牛历史悠久,主要与农业有关。许多阿育吠陀配方使用由牛奶、酥油、凝乳、尿液和粪便制成的各种产品(Sharma 和 Singh,2015 年)。牛粪 (CD) 是通过消化系统后未消化的植物材料残留物。其成分包括水(80%)、未消化的残留物(14.4%)和微生物(5.6%),pH 值范围为 7.1 至 7.4(Nene 等人,2003 年;Teo 和 Teoh,2011 年;Radha 和 Rao,2014 年)。由于含有多种具有益生菌活性的微生物,包括植物乳杆菌、干酪乳杆菌、嗜酸乳杆菌、枯草芽孢杆菌、乳酸肠球菌、双歧杆菌和酵母菌(酿酒酵母),牛肠道下部具有益生菌活性Ware等人(1988)。它包括大量天然存在的有益细菌,乳酸杆菌和球菌,以及一些已知和未知的放线菌,真菌和酵母(Muhammad和Amusa,2003; Radha和Rao,2014; Sharma和Singh,2015)。牛粪具有丰富的微生物多样性,包含近60种细菌(芽孢杆菌属、乳酸杆菌属、棒状杆菌属)、真菌(曲霉菌和木霉菌)、100种原生动物和酵母(酿酒酵母和假丝酵母)(Gupta等人,2016年; Bhatt和Maheswari,2019年)。根据 Muhammad 和 Amusa (2003) 的研究,细菌和真菌等土壤污染物经常侵入陈牛粪。生物技术应用(如酶、生物甲烷和生物氢)和环境应用,以及微生物的生物技术多样性、生物动力学制备和牛粪在农业中的用途。自本世纪初以来,生物学家一直对 CD(粪生生物)的微生物多样性感兴趣(McGranaghan 等人,1999 年;Kim 和 Wells,2016 年)。在可持续循环经济的背景下,CD 微生物用于生物技术、环境和农业应用。许多研究已经证明了新鲜牛粪和尿液分别具有抗菌和抗真菌特性,这可能是因为粪便中存在的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪中还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire 2008)。大量研究已经证明了新鲜牛粪和牛尿分别具有抗菌和抗真菌特性,这可能是因为牛粪中的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire,2008 年)。大量研究已经证明了新鲜牛粪和牛尿分别具有抗菌和抗真菌特性,这可能是因为牛粪中的微生物群会分泌抗菌代谢物(Nene 等人,2003 年;Sharma 和 Singh,2015 年)。几个世纪以来,牛粪一直是印度次大陆农业中用作有机肥料的传统材料。牛粪还含有多种微生物群,可进一步增强土壤生物地球化学过程(Akinde 和 Obire,2008 年)。
摘要:真菌病原体是显着的破坏植物的微生物,对世界作物的产量构成了威胁。几丁质是真菌细胞壁的关键成分和可以通过特定植物受体识别的保守的MAMP(与微生物相关的分子模式),从而激活了几丁质触发的免疫力。在大米和拟南芥等植物中众所周知,特定受体对几丁质感知的分子机制在许多其他植物中也相似。成为植物病原体,真菌必须抑制几丁质触发的免疫的激活。因此,真菌病原体已经发展了各种策略,例如预防几丁质消化或干扰植物几丁质受体或几丁质信号,这些信号在大多数情况下涉及真菌蛋白的分泌。由于几丁质免疫是一种非常有效的防御反应,因此这些真菌机制被认为可以密切协调。在这篇综述中,我们首先概述了当前对金蛋白触发的免疫信号传导和用于抑制其抑制的真菌蛋白的理解。第二,我们讨论了在真菌生物营养中运行的机制,例如白粉病真菌,尤其是在模型物种podosposphaera xanthii中,这是瓜糖粉中粉状霉菌的主要因果剂。在真菌发病机理和促进粉状霉菌疾病的背景下,讨论了与免疫原性差异寡聚物的修饰,降解或隔离有关的关键作用。最后,还讨论了这种基本知识用于开发针对白粉病真菌的干预策略。
Chytrid真菌胚层艾美艾尔(Emersonii)产生带有游泳尾巴的孢子(Zoospores);这些细胞可以感知并朝光线游动。对该物种的兴趣源于持续开发艾默生芽孢杆菌的努力,作为理解相关光遗传电路的光持续演变和分子细胞生物学的模型。在这里,我们报告了B. emersonii美国型培养物收藏品22665菌株的高度结合基因组组装和基因注释。我们在一个带有Illumina配对的基因组序列调查的PACBIO长阅读库中,导致组装21个重叠群,总计34.27 MB。使用这些数据,我们评估了编码基因的感觉系统的多样性。这些分析确定了G蛋白偶联受体,离子转运蛋白和核苷酸循环酶的丰富补体,所有这些都通过域重组和串联重复而多样化。在许多情况下,这些结构域的组合导致蛋白质结构域与跨膜结构域融合,将推定的信号传导与细胞膜绑定在一起。这种模式与B. emersonii感觉信号系统的多元化一致,后者可能在这种真菌的复杂生命周期中起着各种作用。
摘要:Aspergillus oryzae是一种浮雕的真菌,已用于传统的日本酿酒行业,例如清酒,酱油和味o味生产。此外,绿曲霉已被用于异源蛋白质的产生中,并且该真菌由于能够通过引入外国生物合成基因而产生大量异源天然产物,因此该真菌最近被用于生物合成研究。遗传操作在绿曲霉的功能发展中很重要,主要限于野生应变rib40,这是一种适用于实验室分析的基因组参考。但是,有许多具有各种专业特征的A. oryzae的工业酿造菌株,并且根据各种目的所需的特性选择性地使用它们,例如清酒,酱油和味o的生产。自2000年代初以来,已经开发了基因组编辑技术;在这些技术中,转录激活效应效应子核酸酶(Talens)和定期插入的短期短质体重复序列/CRISPR-相关蛋白9(CRISPR/CAS9)已应用于A. oryzae的基因修饰。值得注意的是,CRISPR/CAS9系统已经显着提高了A. oryzae工业菌株基因修饰的效率。在这篇综述中,总结了基因组编辑技术及其在A. Oryzae中的应用潜力的发展。