少突胶质细胞祖细胞(OPC)募集和少突胶质细胞分化的失调导致人类脱髓鞘疾病(如多发性硬化症(MS))中的再髓呈失败。毒蕈碱受体的缺失增强了OPC分化和再生。然而,配体依赖性信号传导与本构受体激活的作用尚不清楚。我们假设脱髓鞘后失调的乙酰胆碱(ACH)释放有助于配体介导的激活阻碍髓磷脂修复。在慢性丘陵(CPZ)诱导的脱髓鞘(雄性和雌性小鼠)之后,我们观察到ACH浓度增加了2.5倍。ACH浓度的这种增加可以归因于ACH合成或乙酰胆碱酯酶 - /丁酰胆碱酯酶(BCHE)介导的降解降低。使用胆碱乙酰基转移酶(CHAT)记者小鼠,我们识别出在Lysolecithin和CPZ脱髓鞘后增加了CHAT-GFP的表达。CHAT-GFP表达在载脂内溶血素诱导的脱髓鞘后的受伤和未受伤的轴突的子集中上调。在CPZ-甲状腺call体中,在GFAP +星形胶质细胞和轴突中观察到CHAT-GFP,这表明神经元和星形胶质细胞ACH释放的潜力。CPZ脱髓鞘后,cpz call体的BCHE表达显着降低。这种减少是由于骨髓少突胶质细胞的丧失,这是BCHE的主要来源。我们确定成熟的少突胶质细胞密度的剂量依赖性降低,对OPC募集没有影响。确定溶血石注射后配体介导的毒蕈碱信号传导的作用,我们给予了胆碱酯酶抑制剂Neostigine,以人为提高ACH。一起,这些结果支持了脱髓鞘后配体介导的毒蕈碱受体激活的功能作用,并表明ACH稳态失调直接导致MS中的再生性失败。
摘要背景:阐明脑缺血再灌注损伤 (CIRI) 的发病机制和开发新的有效疗法至关重要。丁香脂素 (Syr) 是一种存在于各种药草中的呋喃木脂素,可能在治疗 CIRI 中发挥重要作用。本研究旨在研究 Syr 对 CIRI 进展的影响并揭示其中的潜在机制。方法:建立了一种大脑中动脉闭塞 (MCAO) 小鼠模型来研究 CIRI。给小鼠施用浓度为 20 mg/kg 和 40 mg/kg 的 Syr,持续 48 小时。使用 2,3,5-三苯基四唑氯化物 (TTC) 测定法评估 Syr 对小鼠脑梗死的影响。采用免疫染色法检测离子化钙结合衔接分子 1 (Iba1) 和胶质纤维酸性蛋白 (GFAP),采用酶联免疫吸附试验 (ELISA) 检测白细胞介素 (IL)-1 β、肿瘤坏死因子 (TNF)- α、IL-10 和 IL-6 的水平。此外,还进行了末端脱氧核苷酸转移酶 (TdT) 介导的 2′-脱氧尿苷 5′-三磷酸 (dUTP) 缺口末端标记 (TUNEL) 试验,以评估对大脑中动脉闭塞模型 (MCAO) 小鼠脑组织中脑胶质细胞活化、炎症和细胞凋亡的影响。进一步进行免疫印迹以验证其作用机制。结果:Syr 可减轻 MCAO 小鼠的脑梗死。此外,它还降低了这些模型中脑神经胶质细胞的激活。我们的研究结果进一步表明,Syr 可减少 MCAO 小鼠脑组织内的炎症。它还抑制这些组织中的细胞凋亡。从机制上讲,Syr 抑制核因子 κB (NF- κ B) 通路,从而缓解 CIRI。结论:总之,Syr 通过阻断神经胶质细胞激活和抑制炎症反应来缓解 CIRI。
特异性和评论此mAb识别一种27KDA蛋白,被识别为P27KIP1,一种细胞周期调节有丝分裂抑制剂。它是高度特异性的,并且与其他相关有丝分裂抑制剂没有交叉反应。在7种人类乳腺癌细胞系(ZR75-1,ZR75-30,MCF-7,MDAMB453,T47D,CAL51,734B)中的细胞裂解物中,抗体标记与P27KIP1相对应的单个谱带。 它是G1进展的负调节剂,并已被提议充当TGF-的可能介体? ? 诱导G1逮捕。 P27KIP1是候选肿瘤抑制基因。 据报道,低p27表达与肾细胞癌,结肠癌,乳腺癌,非小细胞肺癌,肝细胞癌,多发性骨髓瘤和淋巴结瘤转移症的乳头状脑癌的淋巴结转移酶的预后相关。,抗体标记与P27KIP1相对应的单个谱带。它是G1进展的负调节剂,并已被提议充当TGF-的可能介体??诱导G1逮捕。P27KIP1是候选肿瘤抑制基因。 据报道,低p27表达与肾细胞癌,结肠癌,乳腺癌,非小细胞肺癌,肝细胞癌,多发性骨髓瘤和淋巴结瘤转移症的乳头状脑癌的淋巴结转移酶的预后相关。P27KIP1是候选肿瘤抑制基因。据报道,低p27表达与肾细胞癌,结肠癌,乳腺癌,非小细胞肺癌,肝细胞癌,多发性骨髓瘤和淋巴结瘤转移症的乳头状脑癌的淋巴结转移酶的预后相关。
通过激活神经胶质细胞和神经元损伤而引起的神经血管单元 (NVU) 炎症在神经退行性疾病中起着关键作用。虽然疾病发病的确切机制尚不明确,但某些生物标志物为了解疾病的发病机制、严重程度、进展和治疗效果提供了宝贵的见解。这些标志物可用于评估脑细胞的病理生理状态,包括神经元、星形胶质细胞、小胶质细胞、少突胶质细胞、特化微血管内皮细胞、周细胞、NVU 和血脑屏障 (BBB) 破坏。BBB 的紧密连接 (TJ)、粘附连接 (AdJ) 和间隙连接 (GJ) 成分的损伤或错位会导致包括神经退行性疾病在内的各种脑部疾病的通透性和神经炎症增加。因此,可以评估血液、脑脊液 (CSF) 或脑组织中的神经炎症标志物,以确定神经系统疾病的严重程度、进展和治疗反应。慢性炎症在与年龄相关的神经退行性疾病中很常见,包括阿尔茨海默病 (AD)、帕金森病 (PD) 和痴呆症。神经创伤/创伤性脑损伤 (TBI) 也会导致急性和慢性神经炎症反应。一些标志物的表达也可能在神经退行性疾病发作前很多年甚至几十年发生改变。在这篇综述中,我们讨论了与急性和慢性脑部疾病相关的神经炎症和神经退行性疾病的标志物,尤其是与神经血管病变相关的标志物。这些生物标志物可以在脑脊液或脑组织中进行评估。神经丝轻链 (NfL)、泛素 C 末端水解酶-L1 (UCHL1)、神经胶质纤维酸性蛋白 (GFAP)、离子钙结合衔接分子 1 (Iba-1)、跨膜蛋白 119 (TMEM119)、水通道蛋白、内皮素-1 和血小板衍生生长因子受体 β (PDGFR β ) 是一些重要的神经炎症标志物。最近的 BBB 芯片建模提供了有希望的
摘要 神经系统疾病的血液生物标志物通常用于排除或确认是否存在严重的颅内或脑血管病变,或用于对具有类似表现的疾病(例如出血性中风与栓塞性中风)进行鉴别诊断。由于我们对大脑分子的动力学特性、释放模式和排泄的了解不全面,阻碍了与大脑健康相关的生物标志物的更广泛应用。对于 S100B 尤其如此,S100B 是一种通过血脑屏障 (BBB) 释放的星形胶质细胞衍生蛋白。我们开发了一个开源药代动力学计算机模型,可以研究生物标志物在体内的运动、生物标志物的释放来源及其消除。该模型源自适用于蛋白质生物标志物的通用计算机药物药代动力学模型。我们通过添加真实的血流值、器官的 S100B 水平、淋巴和淋巴循环以及尿液排泄的肾小球滤过来提高模型的预测值。三个关键变量控制血液或唾液中的生物标志物水平:血脑屏障通透性、S100B 分配到外周器官以及星形胶质细胞中的 S100B 细胞水平。还观察到对稳态淋巴引流水平的微小贡献;这种机制也有助于器官吸收循环中的 S100B。这种开源模型还可以模拟其他标志物(如 GFAP 或 NF-L)的动力学行为。我们的结果表明,S100B 在被全身循环中的各个器官吸收后,可以释放回全身体液中,其水平不会显著影响血脑屏障破坏后静脉血或唾液水平的临床意义。关键词:计算机模型、MATLAB、模拟生物学、星形胶质细胞、基于生理的药代动力学模型、淋巴系统、颅外来源、创伤性脑损伤、脑屏障、唾液
外泌体似乎是一种有效的细胞间通讯体,能传递多种类型的分子,如蛋白质和 RNA,这表明它们可能影响神经干细胞(NSC)的分化。我们的 RNA 测序研究表明,当与从人胶质瘤细胞(U87)培养基中获得的外泌体共培养时,人间充质干细胞(hMSC)中与细胞增殖和星形胶质细胞分化相关的 RNA 上调。与细胞增殖相关的金属硫蛋白 3 和弹性蛋白基因分别增加了 10 倍和 7.2 倍。肿瘤生长因子 α、NOTCH1 家族的诱导蛋白 3、STAT3 家族的集落刺激因子和白细胞介素 6 以及 Hes 家族 bHLH 转录因子 1 等星形胶质细胞分化基因的表达也分别增加了 2.3 倍、10 倍、4.7 倍和 2.9 倍。我们进一步使用 U87 神经胶质瘤细胞分泌的外泌体或用白细胞介素 1 β (IL-1 β ) 刺激的 U87 细胞的外泌体检查了这些外泌体对大鼠胎儿神经干细胞 (rNSC) 分化的影响。从胚胎第 14 天 (E14) 的大鼠脑中提取的 rNSC 经过培养方案,通常会导致主要 (~90%) 分化为 ODC。然而,在存在未经处理或 IL-1 β 处理的 U87 细胞的外泌体的情况下,明显更多的细胞分化为星形胶质细胞,特别是在存在从 IL-1 β 刺激的神经胶质瘤细胞中获得的外泌体的情况下。此外,神经胶质瘤衍生的外泌体似乎抑制了 rNSC 分化为 ODC 或星形胶质细胞,这由未标记细胞群显著增加所表明。部分产生的星形胶质细胞同时表达 CD133 和胶质纤维酸性蛋白 (GFAP),表明 U87 细胞的外泌体可以促进 NSC 向星形胶质细胞分化,并具有转化细胞所期望的特征。我们的数据清楚地表明,人类胶质瘤细胞分泌的外泌体为大鼠神经干细胞分化为星形胶质细胞提供了强大的驱动力,
摘要:发生在前脑室下区 (SVZ) 和齿状回颗粒下区 (SGZ) 的成年神经发生受年龄、性激素和其他细胞和分子因素等参数的影响。我们之前发表的关于雄性 F344 大鼠的研究表明,神经发生衰退在 13 至 15 个月大期间尤为明显。我们还确定,这种与年龄相关的神经发生衰退的特殊模式是由氧化还原敏感转录因子核因子 (红细胞衍生 2) 样 2 或 NRF2 表达减少所介导的。在本研究中,我们旨在了解年龄增长和性激素 17β-雌二醇 (E2) 和孕酮 (P4) 对雌性大鼠神经干祖细胞 (NSPC) 的 NRF2 表达和再生功能的影响。在此背景下,我们已确定与雄性大鼠相比,雌性大鼠的 NSPC 功能与年龄相关的衰退的时间进展不同,并且发生得更早,主要在 7-9 个月大时。为了进一步研究这种 NSPC 衰老现象,我们分析了 2、6、9 和 14 个月大雌性 F344 大鼠。在 4 个衰老阶段,我们分别纳入完整大鼠 (Sham) 和卵巢切除大鼠 (OVX),以评估 E2/P4 的重要性。对实验组执行以下行为任务以研究 SVZ 和 SGZ NSPC 功能 - 精细嗅觉辨别、模式分离和 Morris 水迷宫中的平台反转。结果显示,与 OVX 相比,假手术动物的神经发生得到显著保护,尤其是在 6 月龄和 9 月龄时。这些结果也得到了发情阶段研究结果的支持,其中假手术大鼠在发情或发情前期阶段(循环中 E2 和 P4 增加)的表现优于其他阶段。目前,我们正在通过对不同 NSPC 亚型标志物(特别是 GFAP/Nestin、Sox2 和 Dcx)和增殖标志物(BrdU、MCM2)进行双重或三重免疫染色,以及 NRF2 及其下游靶标(如 NAD(P)H 醌脱氢酶 1 (NQO1))来检查四个年龄组中 NSPC 中 NRF2 表达和活性的变化。总之,这些
图1。NPC的延迟移植可改善势后的长期移植物存活。(a)示意图显示了实验设计。免疫缺陷rag2 - / - 小鼠在1 dpi(急性)或7 dpi(延迟)处局部移植Rfluc表达NPC的局部移植。(b)激光多普勒成像证实中风后脑血流(CBF)减少。(c)中风诱导后2小时对CBF进行定量。(d)代表性的生物发光成像(BLI)说明了两组选定时间点的6周内NPC存活。(e)两组移植后的前3天内对BLI信号的定量。(g)在移植后7天使用EDU掺入的增生评估的示意性时间表,在42天(急性)和35天(延迟)移植后移植时进行染色,以跟踪移植物增殖。(h)在移植后7天,在35 dpi(延迟)和42 dpi(急性)天以35 dpi(延迟)和42 dpi(急性)天的7天和KI67 + NPC对EDU + NPC进行定量的代表性免疫荧光图像。(j)显示具有多能标记Nanog,NPC标记PAX6,Neuronal标记NEUN和星形胶质细胞标记GFAP的表型面板。(k)移植后六周移植的NPC(HUNU+)的代表性免疫荧光图像。比例尺:50µm。(l)急性移植组中移植物组成的定量。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。总共使用了8只动物,每组4只动物。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用未配对的Mann-Whitney U检验(C和E)或未配对的t检验(I)评估平均差异的显着性。统计显着性设置为 *,p <0.05; **,p <0.01; ***,p <0.001。
摘要越来越多的研究将大噬菌/自噬的功能障碍与阿尔茨海默氏病(AD)等疾病的发病机理联系起来。鉴于自噬对体内平衡的全球重要性,其功能障碍如何导致特定的神经系统变化令人困惑。为了进一步研究这一点,我们使用ATG7 IKO比较了成年小鼠自噬的全局失活,并与AD相关的致病性变化在突触蛋白的自噬处理中的影响。孤立的前脑突触体,而不是来自ATG7 IKO小鼠的总匀浆,表现出突触蛋白的积累,这表明突触可能是蛋白质稳态破坏的脆弱部位。此外,自噬的停用导致随着时间的推移会导致认知表现受损,而大型运动技能仍然完好无损。尽管自噬停用了6.5周,但在没有细胞死亡或突触丧失的情况下,认知的变化是。在AD的症状应用PSEN1 PSEN1双转基因小鼠模型中,我们发现自噬体成熟的障碍与从这些小鼠分离的自噬体中离散的突触蛋白的存在减少,从而导致这些蛋白质中的一种在洗涤剂无效的蛋白质蛋白质中积累。该蛋白质,SLC17A7/VGLUT,也积聚在ATG7 IKO小鼠突触体中。综上所述,我们得出结论,突触自噬在主要促进蛋白稳态中起作用,并且在降低自噬会中断正常的认知功能的同时,运动的保存表明并非所有电路都受到类似的影响。我们的数据表明,AD中自噬活性的破坏可能与这种成人发作神经退行性疾病的认知障碍有关。缩写:2Drawm:2天径向臂水迷宫;广告:阿尔茨海默氏病; Aβ:淀粉样蛋白β; AIF1/IBA1:同种异体移植炎症因子1;应用:淀粉样蛋白β前体蛋白; ATG7:自噬相关7; AV:自噬液泡; CCV:货物捕获价值; CTRL:控制; DLG4/PSD-95:光盘大型Maguk支架蛋白4; GFAP:神经胶质原纤维酸性蛋白; grin2b/nmdar2b:谷氨酸离子型热带受体NMDA型亚基2B;有限公司:长期抑郁症; MAP1LC3/LC3:微管相关蛋白1轻型链3; m/o:几个月大; PNS:核后上清液; PSEN1/PS1:Presenilin 1; SHB:蔗糖均质化缓冲液; SLC32A1/VGAT:Solute Carrier家族32成员1; SLC17A7/VGLUT1:Solute Carrier家族17成员7; SNAP25:突触体相关蛋白25; SQSTM1/p62:隔离1; Syn1:Synapsin I; SYP:突触素; SYT1:Synaptotagmin 1;塔姆:他莫昔芬; VAMP2:囊泡相关的膜蛋白2; VCL:Vinculin; WKS:几周。
冠状病毒疾病2019年(Covid-19)是一种由严重的急性呼吸综合症冠状病毒2(SARS-COV-2)病毒引起的威胁生命的疾病,该病毒于2019年底在中国首次在中国报道,然后在世界范围内遍及全球[1]。根据世界卫生组织(WHO)的最新数据,自19次大流行以来,全球范围内有761,402,282例确定的病例,而据报道,由于SARS-COV-2-2],据报道,据报道了6,887,000例死亡。自大流行以来,尤其是在第一波和第二波期间,本期特刊的目标是鉴于出现的新知识,突出了SARS-COV-2的关键方面。在本期特刊中总共发表了15份手稿。这些论文提供了有关流行病学,发病机理,表观遗传学的见解[3,4] Covid-19 Covid-19在医院环境中的紧急情况[5,6],晚期诊断[6-8],疫苗接种[9,10]和SARS-COV-COV-2在实验环境中感染[11]。高度的严格性,独创性,对于其中一些人来说,获得的引文数量很高,这是很明显的。特别有趣的是,其中一个关注的问题是某些细胞内细菌的作用,例如肺炎氯化炎和肺炎支原体,在影响两种临床(呼吸道)的范围(呼吸量)上的范围(均具有cyviential tige)的预后和预后,促进了对临床(呼吸)的范围(dive)的预后(dive)(呼吸)(呼吸症)的预后(dive)(呼吸)。与对照组相比,不是显着的[12]。此类共感染也已证明会导致d-二聚体和纤维纤维的增加。这增加了血栓形成引起的血栓形成的风险[13,14]。另一项原始研究,包括致病性和临床性的,旨在测试睾丸激素水平是否与胶质纤维酸蛋白(GFAP)和泛素羧酸羧酸携带末端水解酶L1(UCH-L1),脑损伤的生物标志物,严重形式的covid-199;该研究表明,创伤性脑损伤生物标志物UCH-L1可能与严重的Covid-19病例中观察到的神经系统损害有关[7]。此外,UCH-L1与血清睾丸激素浓度之间的负相关性意味着睾丸激素可能在严重病重的COVID-19患者中在神经后遗症的发展中起作用。有关SARS-COV-2感染诊断的相当数量的手稿一直是本期特刊的出版物。在检测病毒RNA的呼吸道分泌物上进行的基于PCR的实时测定法被认为是SARS-COV-2诊断的金标准方法。,例如液滴 - 数字PCR(DDPCR),簇状的定期间隔短的短膜重复序列(CRISPR)和下一代测序(NGS),目前正在开发中,以检测临床标本中的SARS-COV-2 RNA [8,15]。但是,在分子的靶区域中发现的单匹和多个不匹配的速率