雌激素调节鱼和其他脊椎动物中的许多生殖过程。在鱼类中,大脑,垂体和肝脏是脑垂体 - 甲状腺肝轴雌雄同体的主要作用部位。在脑因子的影响下,垂体合成促性腺激素,在雌性鱼类中,促促性蛋白刺激雌二醇的合成,从而刺激肝脏中的卵巢生成(1,2)。雌激素还通过大脑和垂体中的反馈机制来调节促性腺激素的合成并释放(3-5)。因此,作用在雌激素靶组织(例如肝脏和垂体)上的雌激素化合物有可能干扰鱼类的生殖过程。在过去的几十年中,环境中的内分泌破坏化学物质(EDC),尤其是模仿人为化合物(Xenostrogens)的雌激素,引起了人们对它们对人类和野生动植物健康的潜在影响的担忧(6,7)。工业化合物,例如增塑剂双酚A(BPA)和药物雌激素乙基甲二醇(EE2),是在环境中无处不在的内分泌干扰物中广泛研究的(8-12)。BPA是一种高生产量工业化学化学化学物质,主要用于制造塑料产品和使用的环氧树脂,例如,食品包装金属罐的表面涂层(13)。BPA已被证明具有雌激素作用,也可能导致代谢破坏(14、15)。最近的研究还报道说,许多BPA替代方案具有与BPA相似的内分泌干扰作用(13,16)。ee2用于避孕药中,经常在家庭污水中检测到,并可能污染水生环境(17 - 19)。ee2是一种有效的雌激素,许多研究都记录了其内分泌干扰作用,例如卵黄蛋白的合成增加,男性鱼类女性化,生育率降低和人口下降(12,20 - 20 - 26)。大多数研究都研究了这些EDC在鱼类中的分子效应,主要使用有限的生物标志物(例如植物生成素)(27,28)。虽然雌激素反应式生物标志物在暴露于雌激素方面具有丰富的信息,但它们提供了有限的有关影响的潜在目标和过程的信息。最近的一些基于转录组的研究表明,OMICS确定可能提供更多见解
入侵临界大脑结构,(c)一小部分胶质母细胞瘤干细胞(GSC)的肿瘤再生能力(2,3)。出现的结果支持以下概念:不仅成熟的GBM细胞可以被天然杀伤(NK)细胞有效地靶向(4-8)(4-8),而且它们的相关干细胞也可能非常容易受到NK细胞介导的免疫攻击(9,10)。这些先天免疫性淋巴细胞在预防许多类型的癌症的肿瘤起始和转移方面具有广泛的作用,并且它们比T细胞作为治疗操作的候选者具有明显的优势(11,12)。然而,迄今为止已研究的绝大多数肿瘤细胞具有强大的免疫防御能力,使它们能够逃避NK细胞介导的细胞毒性。这些包括破坏NK和肿瘤细胞之间受体相互作用的破坏以及免疫抑制细胞因子释放到微环境中,例如转化生长因子β(TGF-β)(13-15)。即使人们可以将NK细胞免受GBM肿瘤的反射策略的侵害,也无法消除足够数量的自我更新GSC来维持完整的反应。的确,关于GSC对体内NK细胞监测的敏感性知之甚少。因此,为了确定NK细胞在体内是否可以靶向GSC,我们设计了一项临床前研究,并使用了对原代GBM组织的单细胞分析,从接受手术的患者来确定NK细胞浸润活性肿瘤的部位的程度,以及效力的效力,它们消除了患者衍生的GSC。
摘要。胶质母细胞瘤 (GBM) 被世界卫生组织 (WHO) 归类为 4 级胶质瘤,是一种致命的中枢神经系统肿瘤。随着特定基因异常的发现,GBM 分类已被多次修改,以提供更好的诊断和预后准确性。尽管目前的治疗方式包括手术切除、辅助化疗和放疗相结合,可以短暂控制肿瘤进展,但生存结果仍然令人沮丧。GBM 仍然具有侵袭性,并且复发的主要原因是存在一群独特的无法治疗的胶质母细胞瘤干细胞 (GSC)。高突变率和转录景观失调增加了 GSC 对常规化疗和放射疗法的抵抗力,导致 GBM 患者的预后不佳。因此,GSC 已成为新 GBM 治疗模式的关注目标。因此,了解它们的独特特性(例如 GSC 与缺氧微环境的相互作用,从而促进其生长)非常重要。信号通路的表观基因组调节剂和基本分子成分是胶质母细胞瘤治疗的潜在靶点。在这篇综述中,我们旨在
神经胶质瘤干细胞(GSC)在肿瘤杂种,对治疗的抗性和复发中起着关键作用,使其成为神经肿瘤学的关键靶标。它们在不同状态之间转移至可塑性之间的过渡能力,使它们能够逃避治疗,并有助于神经胶质瘤的侵略性。,由于当前技术的局限性,实时检测GSC可塑性是一个重要的挑战,这些技术缺乏精密医学所需的敏感性和连续监测能力。AI驱动的量子生物传感器代表了一种创新且有前途的解决方案,将超敏感的检测方法与先进的数据分析相结合,以实现GSC行为的实时跟踪,从而改变了我们对胶质瘤治疗的方式。2。量子生物传感器和AI集成
摘要:神经胶质瘤的侵袭性和对治疗的抵抗性使其成为肿瘤学的一个主要问题。尽管医学科学取得了重大进步,但神经胶质瘤的预后仍然不容乐观,手术、放疗 (RT) 和化疗 (CT) 等传统治疗方法经常被证明无效。在发现神经胶质瘤干细胞 (GSC) 后,将神经胶质瘤视为均质肿块的传统观点发生了变化。GSC 对肿瘤生长、治疗抵抗和复发至关重要。这些细胞独特的分化和自我更新能力正在改变我们对神经胶质瘤生物学的认识。本系统文献综述旨在揭示与 GSC 相关的神经胶质瘤进展的分子驱动机制。系统综述遵循 PRISMA 指南,在 PubMed、Ovid MED-LINE 和 Ovid EMBASE 上进行了彻底的文献检索。第一次文献检索于 2024 年 3 月 1 日进行,搜索更新于 2024 年 5 月 15 日。搜索使用 MeSH 术语和布尔运算符,重点关注与 GCS 介导的胶质瘤进展相关的分子机制。纳入标准包括英文研究、临床前研究和临床试验。最初确定了 957 篇论文,其中 65 篇从 2005 年到 2024 年的研究最终被纳入审查。主要 GSC 模型分布按频率降序排列:U87:20 项研究(32.0%);U251:13 项研究(20.0%);A172:4 项研究(6.2%);和 T98G:2 项研究(3.17%)。从最频繁到最不频繁,主要 GSC 通路的分布如下:Notch:8 项研究(12.3%);STAT3:6 项研究(9.2%); Wnt/β-catenin:6 项研究(9.2%);HIF:5 项研究(7.7%);PI3K/AKT:4 项研究(6.2%)。分子效应的分布(从最常见到最不常见)如下:抑制分化:22 项研究(33.8%);增加增殖:18 项研究(27.7%);增强侵袭能力:15 项研究(23.1%);增加自我更新:5 项研究(7.7%);抑制细胞凋亡:3 项研究(4.6%)。这项研究突出了 GSC 异质性和胶质母细胞瘤微环境中的动态相互作用,强调需要采取量身定制的方法。影响 GSC 行为的一些关键通路是 JAK/STAT3、PI3K/AKT、Wnt/β-catenin 和 Notch。治疗可以针对这些通路。这项研究敦促进行更多研究以填补 GSC 生物学方面的知识空白,并将研究结果转化为有用的治疗方法,以改善 GBM 患者的治疗结果。
作者:Patrick G. Killeen 博士,地球物理顾问、退休研究科学家,加拿大地质调查局,渥太华 2021 这是十年一度的矿产勘探会议 (DMEC) 担任勘探趋势与发展赞助人的第六年。DMEC 组织了非常成功的 Exploration '17 会议,于 2017 年在多伦多举行,这是自 1967 年开始的系列会议中的第六次。今年 DMEC 的支持来自第 14 页和第 15 页列出的赞助公司。ETD 审查起源于加拿大地质调查局 (GSC),50 多年来,GSC 科学家编写了一份关于矿产地球物理勘探趋势和新发展的公正年度出版物。这是 Patrick Killeen 撰写评论的第 30 年,最初是作为 GSC 研究科学家。加拿大勘探地球物理学会 (KEGS) 在 2007 年至 2016 年期间是 ETD 的赞助人。DMEC 和 KEGS 致力于推广地球物理学,特别是将其应用于石油以外矿物的勘探;培养地球物理学家的科学兴趣;并促进对这个行业感兴趣的人之间的高专业标准、友谊和合作。
作者:Patrick G. Killeen 博士,地球物理顾问,退休研究科学家,加拿大地质调查局,渥太华 2021 这是十年一度的矿产勘探会议 (DMEC) 担任《勘探趋势与发展》赞助人的第六年。DMEC 组织了非常成功的勘探 '17 会议,该会议于 2017 年在多伦多举行,这是自 1967 年开始的系列会议中的第六次。今年 DMEC 的支持来自第 14 和 15 页列出的赞助公司。ETD 评论源自加拿大地质调查局 (GSC),50 多年来,GSC 的科学家每年都会编写一份公正的出版物,介绍矿产地球物理勘探的趋势和新发展。这标志着 Patrick Killeen 撰写该评论的第 30 年,最初是以 GSC 研究科学家的身份。加拿大勘探地球物理学会 (KEGS) 在 2007 年至 2016 年期间是 ETD 的赞助人。DMEC 和 KEGS 致力于推广地球物理学,特别是将其应用于石油以外矿物的勘探;培养地球物理学家的科学兴趣;并促进对该行业感兴趣的人士之间的高专业标准、友谊和合作。
作者:Patrick G. Killeen 博士,地球物理顾问,退休研究科学家,加拿大地质调查局,渥太华 2021 这是十年一度的矿产勘探会议 (DMEC) 担任《勘探趋势与发展》赞助人的第六年。DMEC 组织了非常成功的勘探 '17 会议,该会议于 2017 年在多伦多举行,这是自 1967 年开始的系列会议中的第六次。今年 DMEC 的支持来自第 14 和 15 页列出的赞助公司。ETD 评论源自加拿大地质调查局 (GSC),50 多年来,GSC 的科学家每年都会编写一份公正的出版物,介绍矿产地球物理勘探的趋势和新发展。这标志着 Patrick Killeen 撰写该评论的第 30 年,最初是以 GSC 研究科学家的身份。加拿大勘探地球物理学会 (KEGS) 在 2007 年至 2016 年期间是 ETD 的赞助人。DMEC 和 KEGS 致力于推广地球物理学,特别是将其应用于石油以外矿物的勘探;培养地球物理学家的科学兴趣;并促进对该行业感兴趣的人士之间的高专业标准、友谊和合作。
摘要。多形性胶质母细胞瘤 (GBM) 是一种原发性脑肿瘤,死亡率高,从初次诊断开始的中位生存期约为 14 个月。尽管目前可用的治疗方法取得了进展,但 GBM 的治疗仍然是姑息性的。GBM 包含 GBM 干细胞 (GSC) 亚群,它们具有许多神经干/祖细胞特征,例如干细胞标志物的表达、自我更新和多谱系分化能力,从而导致这些肿瘤的异质性和复杂性。GSC 可能与肿瘤发生有关,它们被认为是肿瘤形成的驱动力,因为它们具有肿瘤增殖潜力并对放射疗法和化学疗法表现出优先抵抗力。靶向癌症干细胞中的自我更新信号通路可以有效减少肿瘤复发并显着改善预后。本综述的目的是总结目前对 GSC 自我更新信号通路的认识,并讨论未来设计分化疗法的潜在靶向策略。
螺旋弹簧储能技术是一种极具潜力的新兴储能技术,利用永磁同步电机通过收紧或释放螺旋弹簧进行能量转换。针对螺旋弹簧在运行过程中扭矩与惯性同时变化的特点,采用传统的矢量控制方式,螺旋弹簧储能系统难以在调节电网输入/输出功率方面表现出良好的控制性能。提出一种基于电流矢量定向反步控制的网侧变流器(GSC)与机侧变流器(MSC)一体化的螺旋弹簧储能系统与电网功率协调控制方案。首先,建立电流矢量定向坐标系下GSC与PMSM的数学模型。其次,利用反步控制原理设计协调控制方案,并从理论上证明其稳定性。然后,通过考察期望控制性能确定控制方案中的最优控制参数。最后,仿真与实验结果表明,所提出的控制方案在选定的控制参数下,能够很好地协调GSC与MSC,准确、快速地跟踪功率信号,有效提高SSES系统的运行性能及其与电网的能量交换。