ganciclovir抗性突变体759R1)100源自人类巨细胞病毒菌株AD169含有两个抗性突变,其中一个是UL97基因,导致受感染细胞中ganciclovir磷酸化的降低[V. V. V.。 Sullivan,C。L. Talarico,S。C. Stanat,M。Davis,D。M. Coen和K. K. Biron,Nature(伦敦)358:162-164,1992]。在本研究中,我们将第二个突变映射到包含DNA聚合酶基因的4.1-kb DNA片段,并表明它赋予了Ganciclovir抗性而不会损害磷酸化。对4.1-kb区域的序列分析显示,在DNA聚合酶的保守区域V中,在987的位置导致了单个核苷酸变化。重组病毒构建为含有DNA聚合酶突变,但不显示与原始突变体759RD100(22倍)相对于Ganciclovir的中间电阻(4至6倍);重组病毒还表现出对ganciclovir循环磷酸盐(7倍),1-(二羟基-2-二羟基甲基) - 环胞嘧啶(12倍)和磷酸二甲基烷基衍生物(S)-1-(S)-1-(3-羟基-2-磷酸磷酸盐)的抗性。 (S)-1-(3-羟基-2-磷酸甲氧基)胞嘧啶(8至10倍)。但是,重组病毒仍然容易受到某些相关化合物的影响。这些结果表明,人类巨细胞病毒DNA聚合酶是Ganciclovir的抗病毒活性的选择性靶标,Ganciclovir是其某些衍生物和磷酸氧基烷基衍生物的选择。支持区域V在底物识别中的作用;并提出由于聚合酶突变而导致人类巨细胞病毒对这些化合物的临床抗性的可能性。
摘要:Ganciclovir(GCV)在治疗和管理眼病毒感染(例如单纯疱疹病毒(HSV)和巨细胞病毒(CMV)视网膜炎)中起着至关重要的作用。然而,GCV的角膜渗透率低,整个膜的渗透性较差,并且药物生物利用度较差,这在治疗眼病方面构成了挑战。除此之外,传统的局部眼药器(例如眼滴,凝胶和药膏)具有限制,例如撕裂较差,药物的停留时间差,频繁的给药间隔,剂量浪费以及系统性吸收过多,导致差的Ocular Bioavaiailito。已经研究了许多策略,以改善GCV的角膜渗透和眼生物利用度。杂志评论是使用2001 - 2023年的图书馆研究方法撰写的,其中包含有关眼科药物输送系统的Ganciclovir配方的信息。杂志评论讨论了一些实现GCV治疗目标的方法。这篇综述的结果表明,其中一些方法,包括脂质体,微乳液,纳米颗粒微球,聚合物纳米颗粒和金纳米颗粒,可以通过增加渗透率,渗透性,生物可利用性GCV以及眼球中的生物可利用性GCV来改善GCV的常规配方。