脑电图 (EEG) 在大脑解码方面具有巨大潜力,由于需要大量数据,这一潜力尚未得到开发。机器学习的进步通过数据增强技术(如生成对抗网络 (GAN))缓解了这种需求。在这里,我们评估了 GAN 可以在多大程度上增强 EEG 数据以提高分类性能。我们的目标是确定哪些分类器可以从 GAN 增强的 EEG 中受益,并估计样本量对 GAN 增强的影响。我们研究了三种分类器——神经网络、支持向量机和逻辑回归,涉及七种样本量,从 5 到 100 名参与者。GAN 增强的 EEG 增强了神经网络和支持向量机的分类能力,但没有增强逻辑回归。此外,随着样本量的增加,GAN 的增强效果会减弱——这表明它对小样本最有效,这可能有助于无法收集大量数据的研究。关键词:EEG、GAN、数据增强、神经网络、支持向量机、逻辑回归
Joshua Gans 将其研究成果用于有偿演讲和咨询工作。他撰写了《预测机器》、《权力与预测》和《创新 + 平等》等关于人工智能经济学的书籍,并因此获得版税。他还是 Creative Destruction Lab 的首席经济学家,该实验室是多伦多大学的一个帮助种子期公司的项目,他从该项目中获得报酬。他与 Charles River Associates 有合作关系,并拥有 Core Economic Research Ltd.,就反垄断和知识产权问题提供咨询。他还与多家初创公司有股权和咨询关系。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
生成的AI应用程序,在本课程中,我们将了解生成的AI应用程序以及它们如何改变行业。从具有AI驱动的聊天机器人的文本生成到使用深度学习的图像创建,我们将探索现实世界用例。您将发现AI如何生成视频,音乐,代码和个性化内容。了解聊天机器人,创意AI工具和AI驱动的业务解决方案。我们将介绍这些应用程序背后的关键模型,包括gans,llms和扩散模型。无论您是对AI驱动的营销,自动化还是软件开发感兴趣,本课程都提供了动手见解,以了解生成AI如何塑造未来。360Digitmg
在没有监管护栏的情况下,图像生成人工智能 (AI) 工具的民主化放大了互联网上原有的危害。互联网上 AI 图像的出现始于生成对抗网络 (GAN),这是一种神经网络 1,包含 (1) 创建图像的生成器算法和 (2) 评估图像质量和/或准确性的鉴别器算法。通过生成器和鉴别器之间的几轮协作,最终生成 AI 图像 (Alqahtani、Kavakli-Thorne 和 Kumar,2021 年)。ThisPersonDoesNotExist.com 是由 Uber 工程师创建的网站,可生成逼真人物的 GAN 图像,于 2019 年 2 月推出,令观众惊叹不已 (Paez,2019 年),对广泛诈骗和社会工程等滥用领域的利用具有严重影响。这只是 AI 生成的图像及其在互联网上的利用的开始。随着时间的推移,AI 图像生成逐渐从 GAN 发展到扩散模型,这种模型可以生成比 GAN 更高质量、更多样的图像。扩散模型的工作原理是将高斯噪声 2 添加到原始训练数据图像中
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
• Goldfarb, A., Gans, J.,& Agrawal, A.(2019)。人工智能经济学:议程。芝加哥大学出版社。• Agrawal, A., Gans, J., & Goldfarb, A.(2018)。预测机器:人工智能的简单经济学。哈佛商学院出版社。• Goldfarb, A., & Tucker, C. (2019)。数字经济学。经济文献杂志,57(1),3-43。• Goldfarb, A.、Greenstein, S. M. 和 Tucker, C. E.(Eds.)。(2015)。数字经济的经济分析。芝加哥大学出版社。• Maiti, D. 和 Awasthi, A.(2020)。ICT 暴露和福祉与进步水平:跨国分析。社会指标研究,147(1),311-343。• Acemoglu, D. 和 Restrepo, P. (2018)。人工智能、自动化和工作。在《人工智能经济学:议程》(第197-236 页)中。芝加哥大学出版社。• Acemoglu, D.,& Restrepo, P. (2018)。人与机器之间的竞赛:技术对增长、要素份额和就业的影响。美国经济评论,108(6),1488-1542。• Varian, H. R. (2001)。信息技术经济学。加州大学伯克利分校。• Maiti, D.、Castellacci, F. 和 Melchior, A.(2020)。数字化与发展:印度及其他地区的问题。数字化与发展(第页 3-29)。Springer,新加坡。• Singh,N.(2016 年)。信息技术及其在印度经济发展中的作用:回顾。印度发展,283-312。• Castellacci,F.,& Tveito,V.(2016 年)。ICT 对福祉的影响:一项调查和理论框架(编号20161004)。奥斯陆大学技术、创新和文化中心。• Huyer, S., & Mitter, S. (2003)。ICT、全球化和减贫:知识社会的性别层面。坎帕拉(乌干达):http://gab。wigsat。org/policy。htm。
生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括变异自动编码器(VAE),生成对抗网络(GAN),变形金刚,变形金刚,正常流量,基于能量的模型,基于能量的差异模型,以及基本的架构架构。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务求解到诸如dall.e 2,Imagen和稳定扩散等多模型模型中,这本书还探讨了生成AI的未来及其具有竞争优势的潜力。生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括VAE,gans,gans,transformers,“标准化流量”,“基于能量”的模型,基于能量的模型以及扩散的扩散模型。这本书以基本的深度学习概念和高级体系结构为基本的深度学习概念开始。和概率理论,正如某些模型使用数学符号描述的那样。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务解决成多模型,例如Dall.e 2,Imagen和稳定的扩散,这本书还深入研究了生成AI的未来及其具有竞争优势的潜力。要开始使用Python,请访问Learningpypython.org获取免费资源,这些资源将帮助您发展足够的知识来与本书中的示例合作。对线性代数(矩阵乘法等)有牢固的了解也很重要另外,请确保您有一个可以从GitHub存储库中运行代码示例的环境。不用担心您是深度学习的新手 - 您不需要昂贵的硬件即可像GPU一样开始培训模型。实际上,在投资硬件之前了解基础知识更为重要。本书将向您展示如何在自己的数据上培训自己的生成模型,而不是依靠预训练的模型。我们将从第一原则中深入研究这些模型的架构和设计,因此您可以完全了解它们如何使用Python和Keras进行编码。科学家们正在破解代码以复制一些最具开创性的生成深度学习模型,例如变化自动编码器,生成的对抗性网络(GAN),编码器模型和世界模型。在本文中,专家David Foster带领读者从深度学习的基础上到彻底改变该领域的出血 - 边缘算法的旅程。通过分享技巧和技巧,您将深入了解如何优化模型以提高性能和创造力。动手实践实用的GAN示例,例如Cyclegan for Style Transfer和Musegan for Music Generation。学习如何制作复发性生成模型来生成文本,并使用注意机制改进它们。探索生成模型如何授权代理在加强学习框架内处理复杂的任务。最后,深入研究了基于变压器的模型,例如Bert和GPT-2,以及Progan和StyleGan等图像生成技术。
近年来,生成对抗网络 (GAN) 及其变体在图像合成领域取得了前所未有的成功。它们被广泛应用于合成面部图像,随着假货的传播和错误信息的滋生,这给人类带来了潜在的安全隐患。然而,这些人工智能合成的假脸的鲁棒检测器仍处于起步阶段,尚未准备好完全应对这一新兴挑战。在这项工作中,我们提出了一种名为 FakeSpotter 的新方法,该方法基于监测神经元行为来发现人工智能合成的假脸。对神经元覆盖和相互作用的研究成功表明,它们可以作为深度学习系统的测试标准,尤其是在遭受对抗性攻击的环境下。在这里,我们推测监测神经元行为也可以作为检测假脸的有效手段,因为逐层神经元激活模式可以捕获对假脸检测器很重要的更细微的特征。利用最先进的 GAN 合成的四种假脸并规避四种扰动攻击的实验结果证明了我们方法的有效性和鲁棒性。
摘要:乳腺癌是全球第二常见的癌症,主要影响女性,而组织病理学图像分析是用于确定肿瘤恶性肿瘤的可能方法之一。关于图像分析,近年来,深度学习的应用变得越来越普遍。但是,一个重要的问题是可用数据集的不平衡性质,有些类的图像比其他类别的图像更多,这可能会由于较差的概括性而影响模型的性能。避免此问题的可能策略是用最多的图像来缩小课程来创建平衡数据集。尽管如此,小型数据集不建议使用这种方法,因为它可能导致模型性能差。取而代之的是,传统上使用了诸如数据预言之类的技术来解决此问题。这些技术应用了简单的转换,例如翻译或旋转到图像,以增加数据集中的可变性。另一种可能性是使用生成对抗网络(GAN),该网络可以从相对较小的训练集中生成图像。这项工作旨在通过使用GAN而不是传统技术应用数据扩展来提高模型性能在组织病理学图像中进行分类。
此摘要通过整合生成对抗网络(GAN)模型提出了一种新颖的驱动嗜睡检测方法。解决道路安全的关键问题,尤其是在驾驶员疲劳的背景下,该系统利用甘斯的能力来提高嗜睡检测的准确性和效率。通过使用真实数据和合成数据的组合,对GAN模型进行了训练,以识别微妙的面膜和生理指标指示驱动因素的嗜睡。生成的合成数据促进了有限的现实世界昏昏欲睡的驾驶实例的增强,从而改善了模型对各种情况的概括。所提出的系统利用一种多模式的方法,结合了面部识别和生理信号,创建了一个全面而强大的嗜睡检测框架。通过广泛的实验和验证,基于GAN模型的有效性在准确地识别昏昏欲睡的状态中得到了证明,为高级驾驶员辅助系统铺平了道路安全性并有助于减少与疲劳有关的事故的方法。gan在驾驶员嗜睡检测系统中的集成代表了利用人工智能进行实时监控和干预的重要一步,最终增强了驾驶员和道路使用者的安全和福祉。