此摘要通过整合生成对抗网络(GAN)模型提出了一种新颖的驱动嗜睡检测方法。解决道路安全的关键问题,尤其是在驾驶员疲劳的背景下,该系统利用甘斯的能力来提高嗜睡检测的准确性和效率。通过使用真实数据和合成数据的组合,对GAN模型进行了训练,以识别微妙的面膜和生理指标指示驱动因素的嗜睡。生成的合成数据促进了有限的现实世界昏昏欲睡的驾驶实例的增强,从而改善了模型对各种情况的概括。所提出的系统利用一种多模式的方法,结合了面部识别和生理信号,创建了一个全面而强大的嗜睡检测框架。通过广泛的实验和验证,基于GAN模型的有效性在准确地识别昏昏欲睡的状态中得到了证明,为高级驾驶员辅助系统铺平了道路安全性并有助于减少与疲劳有关的事故的方法。gan在驾驶员嗜睡检测系统中的集成代表了利用人工智能进行实时监控和干预的重要一步,最终增强了驾驶员和道路使用者的安全和福祉。
主要关键词