2 面向对象的场景框架 13 2.1 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 场景及其属性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 结论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................38 2.A.7 状态变量....................................................................................................................................................................................38
图 3. 示意图说明了使用基于溶液的工艺通过有机硅弹性体冲压法(左下 - 无相分离的双连续)制造柔性 IL-GPE 薄膜,与旋涂法(右下 - 宏观相分离)相比。左上:DGEBA 环氧树脂、甲基四氢邻苯二甲酸酐 (MeTHPA) 固化剂、N-苄基二甲胺 (BDMA) 催化剂、G4(或四乙二醇二甲醚 (TEGDME))增塑剂、[EMIM][TFSI] 离子液体和 LiTFSI 盐的化学结构。该图经参考文献 [14] 许可转载。版权所有 2020 美国化学学会。
图3。示意图通过硅胶弹性体压印方法(与自旋涂层方法相比(右下 - 右下 - 右镜相距)相比,使用基于溶液的弹性体压印方法(左下 - 双连接)使用基于溶液的工艺制造了柔性IL-GPE膜。左上:DGEBA环氧树脂的化学结构,甲基四氢赤铁甲基酸酐(MECHPA)固化剂,N-苯并二甲基 - 胺(BDMA)催化剂,G4(或四甲基乙二醇乙二醇乙二醇二甲基乙二醇二甲基乙醚(TEGDME)和LITFSI imi imi imi imi imi imi imi imi, 盐。在参考文献[14]的许可下重印该图。版权2020美国化学学会。
Lam Research、Entegris、Gelest 联手推进 EUV 干光刻胶技术生态系统 2022 年 7 月 12 日 该合作为采用突破性技术的全球芯片制造商提供强大的化学品供应链,并支持下一代 EUV 应用的研发 旧金山,2022 年 7 月 12 日 /美通社/ -- SEMICON WEST 2022 -- Lam Research Corp. (NASDAQ: LRCX)、Entegris, Inc. (NASDAQ: ENTG) 和三菱化学集团旗下公司 Gelest, Inc 今天宣布达成战略合作,该合作将为全球半导体制造商提供可靠的前体化学品,用于 Lam 突破性的极紫外 (EUV) 光刻胶干光刻胶技术,这是生产下一代半导体的创新方法。 双方将共同致力于 EUV 干光刻胶技术研发,用于未来几代逻辑和 DRAM 产品,帮助实现从机器学习和人工智能到移动设备的一切。强大的工艺化学品供应链对于 EUV 干光刻胶技术融入大批量生产至关重要。这项新的长期合作进一步拓宽了干光刻胶技术不断发展的生态系统,并将提供来自半导体材料领导者的双源供应,确保在全球所有市场持续交付。此外,Lam、Entegris 和 Gelest 将共同努力,加速开发未来具有成本效益的 EUV 干光刻胶解决方案,用于高数值孔径 (high-NA) EUV 图案化。高 NA EUV 被广泛视为未来几十年器件持续缩小和半导体技术进步所需的图案化技术。干光刻胶提供高蚀刻抗性和可调节的沉积和开发厚度缩放,以支持高 NA EUV 降低的焦深要求。Lam Research 执行副总裁兼首席技术官 Rick Gottscho 表示:“干光刻胶技术是一项突破,它打破了使用 EUV 光刻技术扩展到未来 DRAM 节点和逻辑的最大障碍。” “此次合作将 Lam 的干光刻胶专业知识和尖端解决方案与两家行业前体化学品领导者的材料科学能力和值得信赖的供应渠道结合在一起。干光刻胶生态系统的这一重要扩展为该技术令人兴奋的新水平创新和大批量生产铺平了道路。”干光刻胶最初由 Lam 与 ASML 和 IMEC 合作开发,它提高了 EUV 光刻的分辨率、生产率和良率,从而解决了与创建下一代 DRAM 和逻辑技术相关的关键挑战。它提供了卓越的剂量与尺寸和剂量与缺陷率性能,从而提高了 EUV 扫描仪的生产率并降低了拥有成本。此外,Lam 的干光刻胶工艺比传统光刻胶工艺消耗更少的能源,原材料消耗减少五到十倍,从而提供了关键的可持续发展优势。“Lam 的干光刻胶方法体现了材料层面的关键创新,并提供了广泛的优势,包括更好的分辨率、更高的成本效益和令人信服的可持续发展优势,”Entegris 首席执行官 Bertrand Loy 表示。“我们很自豪能够成为这一创新合作的一部分,以加速干光刻胶的采用,并成为客户值得信赖的工艺材料供应商,帮助他们利用这一重要技术创造下一代半导体。”“我们与 Lam 和 Entegris 合作推进 EUV 光刻的干光刻胶,表明我们致力于支持芯片制造商在材料科学方面的创新,”三菱化学集团旗下公司 Gelest 总裁 Jonathan Goff 表示。“我们看到 EUV 近年来展现出非凡的价值,我们很高兴成为不断发展的生态系统的一部分,以扩大其潜力。”关于 Lam Research Lam Research Corporation 是一家为半导体行业提供创新晶圆制造设备和服务的全球供应商。 Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每款先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)“关于 Lam Research Lam Research Corporation 是面向半导体行业的创新晶圆制造设备和服务的全球供应商。Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每个先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加利福尼亚州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)“关于 Lam Research Lam Research Corporation 是面向半导体行业的创新晶圆制造设备和服务的全球供应商。Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每个先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加利福尼亚州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)
F-35核轰炸机:有两个方面的风险 在俄罗斯侵略乌克兰战争的印象下,联邦总理奥拉夫·肖尔茨于2022年2月27日宣布为联邦国防军提供前所未有的投资金额——没有任何议会或社会辩论事后很明显,这一匆忙的决定并没有给德国带来更多的安全。一方面,这笔钱应该专门用于军事装备。过去,这通常会导致升级而不是放松。我们需要这笔钱来采取能够创造真正安全的措施,例如气候保护、教育、国际理解和加强国内和平预防。另一方面,仓促和缺乏民主辩论会导致非理性和不经济的决定,最终以纳税人的利益为代价。最生动的例子就是计划采购35架F-35战斗轰炸机。德国目前在比切尔1号军事基地有46架战斗轰炸机,用于运输和投掷美国原子弹。这些将被更现代的飞机取代。 2020年,当时的基民盟和社民党大联盟宣布购买F/A-18战斗机用于“核共享”和电子战。 2022年2月27日,肖尔茨在演讲中突然宣布收购F-35,联邦国防部宣布购买F-35。
20世纪被称为信息时代。与技术发展同步,患者随访、成像技术、手术决策和术中方法不断发展。人工智能支持的信息系统可以在筛查、手术决策、随访、治疗、术中并发症管理和术后随访方面为外科医生提供支持。人工智能试图通过上传的数据库识别其环境并自我改进。在机器学习中,成功率是通过训练和测试阶段计算的。在深度学习中,这是通过层来实现的。在卷积神经网络中,对层进行过滤以揭示输入之间的关系。这样,输入之间的关系就被揭示出来了。在神经外科领域,人工智能已开始在许多领域占据一席之地,包括肿瘤分期、放射治疗决策、复发情况、血管病变的确定、创伤性脑损伤的随访和预后确定、深部脑刺激、脊椎滑脱和不稳定的检测、重症监护患者需求的确定和治疗的调节以及颅内压综合征的检测。尽管数据集的创建是一个漫长的过程,但从长远来看,人工智能可以作为一种廉价、方便且可靠的方法为神经外科医生提供支持。
膜的油水分离效率通过紫外可见光谱进行评价(Lu & Yuan,2017)。膜(1-6)的分离效率如图5(a,b,c)所示,依次代表三个分离时间的分离效率,纸基(35°SR)为对照
胰腺癌是最危险的恶性肿瘤之一,是美国癌症死亡的第四大原因全球胰腺癌治疗市场预计将在2025年达到42亿美元。全身化疗与放射线和手术结合使用是最常见的治疗方法,但通常与一系列有毒的,异地的副作用有关,在许多情况下,这可能是限制剂量的。Chemogel能够以足够的浓度靶向化学治疗药,以使所需的作用部位延长局部浓度,并在较长的时间内达到了较高的局部浓度,并最大程度地提高了功效,同时降低了全身毒性。
4 里尔大学、法国国立科学研究院、里尔中央理工学院、Yncra ISEN、法国上法兰西大学、UMR 8520 – IEMN、F-59000 里尔,法国。摘要:我们报告了对软凝胶粘弹性流变性质的非接触式测量。实验是在液体环境中以动态模式使用胶体探针原子力显微镜 (AFM) 进行的。测量了不同振荡频率下液体间隙厚度与机械响应的关系。我们的测量揭示了探针振荡引起的流动与凝胶的粘弹性变形之间的弹性流体动力学 (EHD) 耦合。数据由粘弹性润滑模型定量描述。从数据与模型的拟合中提取了聚二甲基硅氧烷 (PDMS) 凝胶的频率相关储能和损耗模量,并且与 C hasset-Thirion 定律高度一致。我们的结果表明,非接触式胶体探针方法是一种强大的工具,可用于在很宽的频率范围内精细探测软界面。 * 通讯作者:abdelhamid.maali@u-bordeaux.fr
目的:目前肿瘤诱导的哨兵淋巴结检测和转移治疗策略存在局限性。必须尽早识别并警告肿瘤转移,以开展有效的临床干预。此外,由于抗肿瘤药物的非特异性递送和严重的副作用,传统的癌症化疗受到极大的限制。我们旨在利用凝溶胶蛋白 (GSN) 单克隆抗体作为靶向剂和全氟己烷 (PFH) 作为相变剂的潜力,以最大限度地发挥聚乳酸-乙醇酸共聚物 (PLGA) 纳米颗粒药物可控释放系统对 Hca-F 细胞的细胞毒性作用。方法:我们将 PFH 和阿霉素 (DOX) 共封装到 PLGA 纳米颗粒 (NPs) 中,并进一步将 GSN 单克隆抗体结合到 NPs 表面,形成 GSN 靶向相变聚合物 NPs (GSN-PLGA-PFH-DOX),用于肿瘤和转移性淋巴结的成像和治疗。为了促进和触发药物按需释放,应用低强度聚焦超声 (LIFU) 来实现封装药物的可控释放。结果:GSN-PLGA-PFH-DOX NPs 表现出尺寸分布窄、表面光滑等特点。GSN-PLGA-PFH-DOX NPs 还可以特异性结合 Hca-F 细胞并增加超声造影剂 (UCA) 图像对比强度。 GSN-PLGA-PFH-DOX NPs 可实现 GSN 介导的靶向和生物治疗作用以及 LIFU 响应性药物释放,从而在体外对 GSN 过表达细胞产生协同细胞毒性作用。结论:我们的工作可能为原发性肿瘤及其转移瘤的成像和化疗提供一种策略。关键词:聚乳酸-乙醇酸共聚物、凝溶胶蛋白、相变、可控药物释放