前期调查 自1997年青岛CCSD钻井选址研讨会以来,在江苏省东海县茅北CCSD目标区开展了野外地质和地球物理调查,目的是建立钻井区三维地质和地球物理模型,准确确定CCSD先导孔和主孔的钻孔位置。开展的工作包括1:5000和1:10000比例尺地质填图、反射地震勘探、重磁法勘探等。此外,还利用电缆取芯技术钻探了1028m深的连续取芯钻孔(PP2)。在该孔中,测量了不同深度的温度和来自孔的岩心的热导率,计算了1000m深度的地层热梯度并外推到5000m深度。在该孔内还进行了地球物理测井和VSP。根据综合研究和调查的结果,确定了CCSD导向孔和主孔的精确坐标。进一步的地质和地球物理研究,包括对岩心的研究
Alpha Geoscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Auslog/Scintrex . . . . . . . . . . . . . . . . . . . . . . . . . OBC 澳大利亚地球物理调查局 . . . . . . . . . . . . . . . . . . . . .12 & 39 BA Dockery & Associates . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Geosoft 澳大利亚 . . . . . . . . . . . . . . . . . . .2 & 38 Geoterrex-Dighem . . . . . . . . . . . . . . . . . . . . IBC GMA 国际 . . . . . . . . . . . . . . . . . . .11 Haines Survey . ...
本研究利用磁性,重力和磁铁(MT)数据,对伊朗的Sabalan地热区进行了全面的地球物理研究。这些数据已倒入5000米的深度。磁数据反演准确识别出断层或断裂。重力数据反演产生了一个密度模型,以区分侵入性质量,储层和覆盖单元。mt数据反演使用了TM和TE模式的明显电阻率和相位数据。将所得模型与地质横截面进行了比较,以评估其准确性和一致性。地球物理模型的整合为萨巴兰地区提供了全面的地质概念模型。鉴定了热源,热液储存库和潜在的地热流体途径,证明地球物理方法在地下映射中的有效性。基于钻探和地质数据的较新的Sabalan模型的一致性增加了对发现的信心。
确保矿产资源对一个国家的持续发展至关重要。由于大多数浅层矿体已被开采,深层矿体是矿产勘探的目标。使用地质和钻探数据很难预测深层矿体的几何形状。地球物理勘查为解释深层地下结构提供了三维 (3D) 物理模型。为了提高解释准确性,不仅需要有效地整合地球物理勘探,还需要有效地整合各种复杂的地质信息。我们提出了一种基于数字孪生的矿产勘探方法。包括地球物理数据在内的各种复杂地质信息被集成并内置到数字孪生中。在此基础上,可以提高解释的可靠性,并对勘探和钻探进行精确的模拟。通过使用数字孪生,我们可以预期进行稳定的综合分析,以最大限度地减少每次探索的不确定性并提高探索成功率。
1.2 目的 GB Energy 提议在 Vic/RL1(V) 进行岩土工程调查(以下简称“活动”)(见图 1.1)。这些调查的设计以 GB Energy 于 2020 年 3 月 26 日至 4 月 2 日根据黄金海滩地球物理和岩土工程调查环境计划 (EP) (GB-OS-ENV-PLA-001) 进行的地球物理调查为依据,该计划于 2019 年 4 月 18 日获得当时的就业、区域和地区部批准。
摘要。磁法是最古老和最广泛使用的地球物理技术之一,用于勘探地球地下。它是一种相对简单且廉价的工具,适用于各种地下勘探问题,涉及从地壳底部附近到土壤最上层一米内的水平磁性变化。成功应用磁法需要深入了解其基本原理和仔细的现场工作、数据缩减和解释。通常,解释仅限于定性方法,这些方法只是绘制异常地下条件的空间位置,但在有利情况下,该方法的技术状态将允许更多的定量解释,包括指定异常源的性质。没有其他地球物理方法为如此广泛的问题提供关键输入。然而,磁法很少能为调查问题提供完整的答案。因此,它通常与其他地球物理和地质数据一起使用,以限制其解释的模糊性。
摘要。磁法是最古老和最广泛使用的地球物理技术之一,用于勘探地球地下。它是一种相对简单且廉价的工具,适用于各种地下勘探问题,涉及从地壳底部附近到土壤最上层一米内的水平磁性变化。成功应用磁法需要深入了解其基本原理,并进行仔细的实地工作、数据缩减和解释。通常,解释仅限于定性方法,这些方法只是绘制异常地下条件的空间位置,但在有利的情况下,该方法的技术状态将允许更多的定量解释,包括指定异常源的性质。没有其他地球物理方法可以为如此广泛的问题提供关键输入。然而,磁法很少能为调查问题提供完整的答案。因此,它通常与其他地球物理和地质数据一起使用,以限制其解释的歧义。
在准备CTBT的生效后,《全面的核测试条约组织》(CTBTO)正在积极发展OSI功能。被动地震学监测的最新进展包括升级遥测系统,用于数据处理软件的数据传输和开发,以适应地形具有挑战性的环境。为了评估其他地球物理技术的当前OSI地球物理成像能力,以及以综合方式进行深层的现场表征应用,在2022年9月在奥地利YBBStaler Alps进行了广泛的现场测试。共振地震学和主动地震调查,磁性和重力场映射以及电导率测量是在40-350 m深度的三个轮廓上进行的,模仿地下核爆炸产生的地下腔。这是新获得的主动地震数据记录系统的第一个现场测试,其目的是开发用于主动地震调查的OSI方法。在所有地球物理技术中,主动的地震调查具有为更深的位点表征提供最高分辨率的潜力。
图 3 HER 记录 图 4 先前的考古调查 图 5 地球物理调查解释图 图 6 覆盖在地球物理调查结果上的评估沟槽平面图 图 7 覆盖在评估沟槽平面图上的考古兴趣区 图 8 拟议开发项目中显示的考古兴趣区 图 9 拟议开发项目中显示的考古兴趣区——北部地区 图 10 拟议开发项目中显示的考古兴趣区——中部地区 图 11 拟议开发项目中显示的考古兴趣区——东部地区