鉴于机器学习的最新进展(ML),密码学界已经开始探索ML方法对新的密码分析方法设计的适用性。虽然当前的经验结果表现出了希望,但这种方法在多大程度上胜过classical classical cryptantrytic方法的程度仍然不清楚。在这项工作中,我们启动探索基于ML的密码分析技术的理论,尤其是为了了解与传统方法相比,它们是否从根本上限制了新的结果。虽然大多数经典的密码分析至关重要地依赖于处理单个样本(例如,明文 - 含量对),但迄今为止,现代的ML方法仅通过基于梯度的计算与样品相互作用,这些计算平均损失函数在所有样品上。因此,可以想象的是,这种基于梯度的方法本质上比经典方法弱。我们引入了一个统一的框架,用于捕获具有直接访问单个样本和“基于梯度的”的“基于样本”的对手,这些框架仅限于发出基于梯度的查询,这些查询通过损失函数在所有给定的样本上平均。在我们的框架内,我们建立了一个一般的可行性结果,表明任何基于样本的对手都可以通过看似基于潜在的基于梯度的对手进行模拟。此外,就基于梯度的模拟器的运行时间而言,模拟表现出几乎最佳的开销。最后,我们扩展并完善了模拟技术,以构建一个完全可行的基于梯度的模拟器(对于避免可行的可行的隐秘任务的不良开销至关重要),然后将其用于构建基于梯度的模拟器,该模拟器可以执行特定和非常有用的梯度方法。共同审议,尽管ML方法在多大程度上胜过经典的隐式分析方法仍然不清楚,但我们的结果表明,这种基于梯度的方法并非本质上受到其看似限制对所提供样品的访问的限制。
强化学习(RL)是决策问题中广泛的技术,构成了两个基本操作 - 政策评估和政策改进。提高学习效率仍然是RL的关键挑战,许多努力着重于使用合奏批评来提高政策评估效率。,当使用多个批评家时,政策改进过程中的演员可以获得不同的梯度。先前的研究将这些梯度合并在一起而没有考虑它们的分歧。因此,优化政策改进计划对于提高学习效率至关重要。本研究的重点是调查合奏批评家对政策改进引起的差异分歧的影响。我们介绍了梯度方向不确定性的概念,以此来衡量政策改进过程中使用的梯度之间的分歧。通过解决梯度之间的分歧,我们发现梯度方向不确定性较低的过渡在政策改进过程中更可靠。基于此分析,我们提出了一种称为von Mises-fisher经验重新采样(VMFER)的方法,该方法通过重新采样过渡过渡和为梯度方向不确定性较低的过渡提供了更高的信心来优化政策改进过程。我们的实验表明,VMFER显着地执行基准,并且特别适合RL中的整体结构。
联邦学习在统计和系统异质性方面面临重大挑战,以及高能量消耗,需要有效的客户选择策略。传统方法,包括启发式和基于学习的方法,无法解决这些复杂性。为了回应,我们提出了FedGC,这是一种新颖的生成客户选择框架,它可以创新将客户选择过程作为一项固定的任务重新铸造。从大语模型中使用的方法中汲取灵感,FedGC能够在连续表示空间内编码丰富的决策知识,从而实现了有效的基于梯度的优化,以搜索将通过生成而产生的最佳客户选择。框架组合四个步骤:(1)使用经典客户端选择方法自动收集“选择得分”对数据; (2)在此数据上训练编码器 - 评估器 - 编码器框架以结构连续的表示空间; (3)在此空间中启用基于梯度的优化,以进行最佳客户选择; (4)通过使用光束搜索训练有素的解码器来生成最佳客户端选择。FedGC通过更全面,可推广和高效,同时选择模型性能,延迟和能力消费来优于传统方法。通过广泛的实验分析证明了FedGC的有效性。
摘要 - 填充学习(FL)可以通过共享车辆本地模型而不是本地数据的梯度来在一定程度上保护车辆在车辆边缘计算(VEC)中的隐私。车辆本地型号的梯度通常对于车辆人工智能(AI)应用通常很大,因此传输如此大的梯度会导致较大的环境潜伏期。梯度量化已被认为是一种有效的方法,可以通过压缩梯度和减少位的数量,即量化水平,从而减少FL的每轮潜伏期,从而降低VEC。选择量化水平和阈值的选择决定了量化误差,这进一步影响了模型的准确性和训练时间。为此,总训练时间和量化错误(QE)成为启用FL的VEC的两个关键指标。与启用FL的VEC共同优化总训练时间和量化宽松至关重要。但是,随时间变化的通道条件会引起更多挑战来解决此问题。在本文中,我们提出了一个分布式的深钢筋学习(DRL)基于量化水平分配方案,以优化长期奖励,从总培训时间和量化宽松的时间来优化。广泛的模拟确定了总训练时间和量化宽松之间的最佳加权因素,并证明了拟议方案的可行性和有效性。
这项研究利用一系列机器学习算法来预测Ikpoba河的小时流量。数据收集依赖于沿河沿线安装的水透度系统,收集每小时测量量高度,环境温度和大气压。将量规高度转换为流量数据,从Ikpoba河等级曲线中提取了涵盖2015年至2020年期间的历史量规和流量数据,并使用曲线拟合技术对水流和量规高度之间的精确关系进行了分析。使用各种拟合度措施,例如调整后的R平方值,估计标准误差和确定系数,用于识别最佳拟合关系。随后使用土壤和水评估工具对估计的流量数据进行了验证,并结合了研究区域的数字高程模型,以及其他输入参数,例如土壤,坡度,每日最大降水量和每日最高温度。使用Microsoft Excel中生成的回归图进行了验证结果。从机器学习结果中,随机森林算法在预测流量方面的其他方法优于其他方法,均为0.02的均值误差和确定系数为0.98。相反,决策树在预测单个数据点方面表现出了较高的准确性,最低的根平方误差为0.02。
摘要。今天的深度学习方法着重于如何设计目标函数以使预测尽可能接近目标。同时,必须设计适当的神经网络体系结构。现有方法忽略一个事实,即当输入数据逐层特征转换时,会丢失大量信息。本文深入研究了信息瓶颈和可逆功能的重要问题。我们提出了可编程梯度信息(PGI)的概念,以应对深网所需的各种更改以实现多个目标。PGI可以为目标任务提供完整的输入信息来计算目标函数,以便可以获取可靠的梯度信息以更新网络参数。此外,设计了轻巧的网络体系结构 - 一般有效的层聚合网络(GELAN)。Gelan确认PGI在轻量级模型上取得了卓越的成绩。我们在MS可可对象检测数据集上验证了所提出的Gelan和PGI。结果表明,与基于深度卷积开发的状态方法相比,Gelan仅使用常规召集操作员来实现更好的参数利用。PGI可用于从轻量级到大型的各种型号。它可用于获取完整的信息,因此,与使用大型数据集进行预训练的最新模型可以实现训练范围的模型,比较结果如图1。源代码在https://github.com/wongkinyiu/yolov9上发布。
摘要摘要摘要:摘要:DQN之类的深强化学习方法的学习过程和工作机制不透明,并且无法感知其决策基础和可靠性,这使该模型的决策高度可疑,并且极大地限制了深入强化学习的应用程序场景。要解释智能代理的决策机制,本文提出了基于梯度的显着性图生成算法SMGG。它使用高级卷积层生成的特征图的梯度信息来计算不同特征地图的重要性。使用模型的已知结构和内部参数,从模型的最后一层开始,通过计算特征映射的梯度来生成不同特征地图相对于显着性图的重量。它列出了在正方向和负面方向上特征的重要性,并使用具有积极影响的权重来加重功能图中捕获的特征,从而形成了当前决策的积极解释;它使用对其他类别产生负面影响的权重来对特征映射中捕获的特征进行加权,从而形成了当前决策的反向解释。决策的显着性图是由两者共同生成的,并且获得了智能代理的决策行为的基础。通过实验证明了该方法的有效性。
本文研究了一个政策优化问题,这是由协作多代理强化学习在分散的环境中引起的,在该环境中,代理商通过无方向的图表与邻居进行交流,以最大程度地提高其累积奖励的总和。提出了一种新型的分散自然政策梯度方法,称为基于动量的分散自然政策梯度(MDNPG),提出了该方法,它结合了自然梯度,基于动量的方差降低,并梯度跟踪到分散的体积梯度梯度梯度上升框架中。MDNPG的O(n -1 ϵ -3)样品复杂性,以收敛到一个定位点,已建立在标准假设下,其中N是代理的数量。表明MDNPG可以实现分散策略梯度方法的最佳收敛率,并且与集中式优化方法相比,具有线性加速。此外,MDNPG的出色经验性能超过了其他最先进的算法。
抽象的光学拉力为光学操纵提供了新的自由度。通常认为,事件场的梯度不能产生远距离的光拉力。在这里,我们从理论上提出并在数值上证明了由操纵对象中的自我诱导的梯度范围造成的远程光拉力。类似于量子隧道中的潜在障碍,我们使用光子带隙设计,以获取位于光子晶体波导中的操纵物体内部的强度梯度,从而获得拉力。与通常的散射型光学拉力拉力不同,所提出的梯度 - 线方法不需要精确地消除从操纵物体中的反射。特别是,爱因斯坦 - 劳伯形式主义用于设计这种非常规的梯度力。在波导中操纵物体的光共振时,可以通过多达50倍的因素来增强力的大小,从而使其对吸收不敏感。开发的方法有助于打破散射力的局限性,以获得长距离的光学拉力,以操纵和分类纳米颗粒和其他纳米对象。使用带隙来获得拉力的发达原理也可以应用于其他类型的波浪,例如声波或水波,这对于众多应用很重要。
6医学系,洛约拉大学医学中心,芝加哥,伊利诺伊州7 7号急诊医学系,威斯康星大学 - 麦迪逊分校,麦迪逊麦迪逊大学威斯康星州麦迪逊市8号湾长8号湾佛罗里mchurpek@medicine.wisc.edu披露:Drs。Churpek和Edelson是获得患者风险评估专利(US11410777)专利的发明者,并从芝加哥大学获得此知识产权的特许权使用费。Edelson博士受雇,并在Agilemd拥有股权,该股份销售和分发Ecart。资金来源:这项工作得到了美国国立卫生研究院(PI:MMC; R01HL157262)和生物医学高级研发局(BARDA)的资金的支持,这是其研究创新创新与Ventures and Ventures and Ventures and Ventures(Drive)的一部分,合同编号为75A5A5A5A5A5A5A5A5A50121C00043(PI:DPE:DPE)。贡献:MMC对手稿的内容承担全部责任。MMC和DPE概念化了这项研究。KAC对数据进行了统计分析。 MMC撰写了手稿的初稿,并修改了后续版本。 所有作者都为数据解释做出了贡献,审查并编辑了初始草稿,并批准了最终手稿。 关键字:预警评分;临床恶化;机器学习;快速响应系统;人工智能单词计数:3,310KAC对数据进行了统计分析。MMC撰写了手稿的初稿,并修改了后续版本。所有作者都为数据解释做出了贡献,审查并编辑了初始草稿,并批准了最终手稿。关键字:预警评分;临床恶化;机器学习;快速响应系统;人工智能单词计数:3,310