自 2004 年首次成功分离石墨烯以来,凝聚态物理和材料科学对石墨烯产生了浓厚的兴趣。这种单层材料是所有维度石墨材料的基本组成部分,具有优异的电导率和热导率。石墨烯具有独特的能带结构,带隙为零,导带和价带在称为狄拉克点的点相接。这种不常见的能带结构使快速电子传输成为可能。通过调节石墨烯和基底材料之间的相互作用,可以在一定程度上调节能带隙的大小,从而实现半导体行为,即通过掺杂可以改变电导率。随着计算机芯片和其他现代电子产品在过去几十年中不断进步,它需要不断缩小的硅芯片,但目前的纳米制造方法无法使硅芯片比现在小得多。石墨烯被认为在未来的半导体电子设备中非常有前途,可以替代硅,因为它应该能够制造出比传统材料制成的器件薄得多的器件。然而,除非找到增加能隙的方法,并找到大量生产高质量单层石墨烯的方法,否则石墨烯取代半导体是不可能的。尽管石墨烯无法彻底改变半导体行业,但它在各种电子应用方面仍然很有前景。
● 随着区块链交易数量的增长,所需的存储空间和网络带宽也随之增长。● 迄今为止,DAG 项目包含一些中心化特性,例如中央协调器、预选验证器或“见证”节点,或完全私有的网络系统。迄今为止,它们还无法维持“纯粹的去中心化”。
我们描述了一种从聚合图统计数据(而不是图邻接矩阵)学习深度图生成模型 (GGM) 的新设置。匹配观察到的训练图的统计数据是学习传统 GGM(例如 BTER、Chung-Lu 和 Erdos-Renyi 模型)的主要方法。隐私研究人员已提出从图统计数据中学习作为保护隐私的一种方式。我们开发了一种架构来训练深度 GGM 以匹配统计数据,同时保留局部差异隐私保证。对 8 个数据集的实证评估表明,当两者都仅从图统计数据中学习时,我们的深度 GGM 比传统的非神经 GGM 生成更逼真的图。我们还将仅在统计数据上训练的深度 GGM 与在整个邻接矩阵上训练的最先进的深度 GGM 进行了比较。结果表明,图统计数据通常足以构建具有竞争力的深度 GGM,该深度 GGM 可生成逼真的图,同时保护本地隐私。
政府和明尼苏达州的非营利部门希望成为技术的早期采用者。我们以预期运营需求和提供切实成果的声誉使我们成为将各种群体团结在一起并围绕能源和业务目标保持利益的首选合作伙伴。3。实用问题解决者:我们专注于在现实世界中起作用的实用解决方案。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
近年来见证了一代和重建范式深入融合的趋势。在本文中,我们扩展了可控制的生成模块的能力,以实现更全面的手网恢复任务:在单个框架中,手工网格的生成,内部网状,重建,重建和拟合,我们将其命名为H olistic H和MESH R Ecovery(HHMR)。我们的主要观察结果是,具有强大多模式可偿还性的单个生成模型可以实现不同类型的手网恢复任务,并且在这样的框架中,实现不同的任务只需要给出不同的信号作为条件。为了实现这一目标,我们提出了基于图形卷积和整体手工网状恢复的注意力卷积和注意力机制的多合一扩散框架。为了实现强大的控制能力,同时确保多模式控制信号的解耦,我们将不同的模态映射到共享特征空间并应用跨尺度随机
摘要 - 本文提出了一种旨在检测套利机会的模型,重点是三角形和跨市场套利。利用Bellman-Ford算法和图形理论,该模型有效地确定了负循环,指示了高流动性环境中潜在套利的负循环,并结合了虚拟和实时数据。虽然证明它对于三角套利特别有效,但该模型需要进一步的完善才能提高其在跨市场场景中的有效性。在实际交易方案中,该模型面临着重大挑战,例如需要快速执行,交易费用的影响以及波动金融市场的需求。该研究讨论了必要的模型增强功能,以提高现实世界的适用性和执行效率。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L